

Ingo Wegener

Complexity Theory

Ingo Wegener

123

Complexity Theory
Exploring the Limits of Efficient Algorithms

Translated from the German by Randall Pruim

With 31 Figures

Library of Congress Control Number: 2005920530

ISBN-10 3-540-21045-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-21045-0 Springer Berlin Heidelberg New York

Ingo Wegener
Universität Dortmund
Fachbereich Informatik
Lehrstuhl Informatik II
Baroper Str. 301
44221 Dortmund
Germany
wegener@1s2.cs.uni-dortmund.de

Translated from the German „Komplexitätstheorie – Grenzen der
Effizienz von Algorithmen“ (Springer-Verlag 2003 , ISBN 3-540-00161-1)
by Randall Pruim.

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: by Randall Prium
Printed on acid-free paper 33/3142/YL - 5 4 3 2 1 0

Preface to the Original German Edition

At least since the development of the theory of NP-completeness, complexity
theory has become a central area of instruction and research within computer
science. The NP �= P-problem represents one of the great intellectual challenges
of the present. In contrast to other areas within computer science, where it is
often suggested that nearly all problems are solvable with the aid of computers,
the goals of complexity theory include showing what computers cannot do.
Delineating the boundary between problems that can be efficiently solved
and those that can only be solved with an unreasonable amount of resources
is a practically relevant question, but so is the structural question of what
determines the complexity or “complicatedness” of problems.

The development of complexity theory is presented in this book as essen-
tially a reaction to algorithmic development. For this reason, the investiga-
tion of practically important optimization problems plays a predominant role.
From this algorithmic perspective, reduction concepts can be thought of as
methods to solve problems with the help of algorithms for other problems.
From this it follows conversely that we can derive the difficulty of a problem
from the difficulty of other problems.

In this book we choose an unusual approach to the central concept of non-
determinism. The usual description, based on computers that guess a correct
computation path or for which a suitable computation path exists, is often
confusing to students encountering nondeterminism for the first time. Here
this description is replaced with an introduction to randomized algorithms.
Nondeterminism is then simply the special case of one-sided error with an
error-rate that may be larger than is tolerable in applications. In this presen-
tation, nondeterministic algorithms can be run on normal computers, but do
not provide a satisfactory solution to problems. Based on experience, we are
hopeful that this algorithmic approach will make it simpler for students to
grasp the concept of nondeterminism.

Since this is not intended to be a research monograph, the content has been
limited to results that are important and useful for students of computer sci-
ence. In particular, this text is aimed at students who want an introduction

VI Preface

to complexity theory but do not necessarily plan to specialize in this area. For
this reason, an emphasis has been placed on informal descriptions of the proof
ideas, which are, of course, followed by complete proofs. The emphasis is on
modern themes like the PCP-theorem, approximation problems, randomiza-
tion, and communication complexity at the expense of structural and abstract
complexity theory.

The first nine chapters describe the foundation of complexity theory. Be-
yond that, instructors can choose various emphases:

• Chapters 10, 13, and 14 describe a more classically oriented introduction
to complexity theory,

• Chapters 11 and 12 treat the complexity of approximation problems, and
• Chapters 14, 15, and 16 treat the complexity of Boolean functions.

Many ideas have come together in this text that arose in conversations.
Since it is often no longer possible to recall where, when, and with whom
these conversations were held, I would like to thank all those who have dis-
cussed with me science in general and complexity theory in particular. Many
thanks to Beate Bollig, Stefan Droste, Oliver Giel, Thomas Hofmeister, Mar-
tin Sauerhoff, and Carsten Witt, who read the [original German] manuscript
and contributed to improvements through their critical comments, and to Al-
ice Czerniejewski, Danny Rozynski, Marion Scheel, Nicole Skaradzinski, and
Dirk Sudholt for their careful typesetting.

Finally, I want to thank Christa for not setting any limits on the time I
could spend on this book.

Dortmund/Bielefeld, January 2003 Ingo Wegener

Preface to the English Edition

This book is the second translation project I have undertaken for Springer.
My goal each time has been to produce a text that will serve its new audience
as well as the original book served its audience. Thus I have tried to mimic
as far as possible the style and “flavor” of the original text while making the
necessary adaptations. At the same time, a translation affords an opportunity
to make some improvements, which I have done in consultation with the
original author. And so, in some sense, the result is a translation of a second
edition that was never written.

Most of the revisions to the book are quite minor. Some bibliography
items have been added or updated; a number of German sources have been
deleted. Occasionally I have added or rearranged a paragraph, or included
some additional detail, but for the most part I have followed the original
quite closely. Where I found errors in the original, I have tried to fix them; I
hope I have corrected more than I have introduced.

It is always a good feeling to come to the end of a large project like this
one, and in looking back on the project there are always a number of people
to thank. Much of the work done to prepare the English edition of this book
was done while visiting the University of Ulm in the first half of 2004. The
last revisions and final touches were completed during my subsequent visit at
the University of Michigan. I would like to thank all my colleagues at both
institutions for their hospitality during these visits.

A writer is always the worst editor of his own writing, so for reading
portions of the text, identifying errors, and providing various suggestions for
improvement, I want to thank Beate Bollig, Stefan Droste, Jeremy Frens, Judy
Goldsmith, André Gronemeier, Jens Jägersküpper, Thomas Jansen, Marcus
Schaefer, Tobias Storch, and Dieter van Melkebeek, each of whom read one
or more chapters. In addition, my wife, Pennylyn, read nearly the entire
manuscript. Their volunteered efforts have helped to ensure a more accurate
and stylistically consistent text. A list of those (I hope few) errors that have
escaped detection until after the printing of the book will be available at

VIII Preface

ls2-www.cs.uni-dortmund.de/monographs/ct

Finally, a special thanks goes to Ingo Wegener, who not only wrote the
original text but also responded to my comments and questions, and read the
English translation with a careful eye for details; and to Hermann Engesser
and Dorothea Glaunsinger at Springer for their encouragement, assistance,
and patience, and for a fine Kaffeestunde on a sunny afternoon in Heidelberg.

Ann Arbor, January 2005 Randall Pruim

It is possible to write a research monograph in a non-native language. In
fact, I have done this before. But a textbook with a pictorial language needs
a native speaker as translator. Moreover, the translator should have a good
feeling for the formulations and a background to understand and even to shape
and direct the text. Such a person is hard to find, and it is Randall Pruim who
made this project possible and, as I am convinced, in a perfect way. Indeed,
he did more than a translation. He found some mistakes and corrected them,
and he improved many arguments. Also thanks to Dorothea Glaunsinger and
Hermann Engesser from Springer for their enthusiastic encouragement and for
their suggestion to engage Randall Pruim as translator.

Bielefeld/Dortmund, January 2005 Ingo Wegener

Contents

1 Introduction . 1
1.1 What Is Complexity Theory? . 1
1.2 Didactic Background . 5
1.3 Overview . 6
1.4 Additional Literature . 10

2 Algorithmic Problems & Their Complexity 11
2.1 What Are Algorithmic Problems? . 11
2.2 Some Important Algorithmic Problems . 13
2.3 Measuring Computation Time . 18
2.4 The Complexity of Algorithmic Problems 22

3 Fundamental Complexity Classes . 25
3.1 The Special Role of Polynomial Computation Time 25
3.2 Randomized Algorithms . 27
3.3 The Fundamental Complexity Classes for Algorithmic Problems 30
3.4 The Fundamental Complexity Classes for Decision Problems . . 35
3.5 Nondeterminism as a Special Case of Randomization 39

4 Reductions – Algorithmic Relationships Between Problems 43
4.1 When Are Two Problems Algorithmically Similar? 43
4.2 Reductions Between Various Variants of a Problem 46
4.3 Reductions Between Related Problems . 49
4.4 Reductions Between Unrelated Problems 53
4.5 The Special Role of Polynomial Reductions 60

5 The Theory of NP-Completeness . 63
5.1 Fundamental Considerations . 63
5.2 Problems in NP . 67
5.3 Alternative Characterizations of NP . 69
5.4 Cook’s Theorem . 70

X Contents

6 NP-complete and NP-equivalent Problems 77
6.1 Fundamental Considerations . 77
6.2 Traveling Salesperson Problems . 77
6.3 Knapsack Problems . 78
6.4 Partitioning and Scheduling Problems . 80
6.5 Clique Problems . 81
6.6 Team Building Problems . 83
6.7 Championship Problems . 85

7 The Complexity Analysis of Problems . 89
7.1 The Dividing Line Between Easy and Hard 89
7.2 Pseudo-polynomial Algorithms and Strong NP-completeness . . 93
7.3 An Overview of the NP-completeness Proofs Considered 96

8 The Complexity of Approximation Problems – Classical
Results . 99
8.1 Complexity Classes . 99
8.2 Approximation Algorithms . 103
8.3 The Gap Technique . 106
8.4 Approximation-Preserving Reductions . 109
8.5 Complete Approximation Problems . 112

9 The Complexity of Black Box Problems 115
9.1 Black Box Optimization . 115
9.2 Yao’s Minimax Principle . 118
9.3 Lower Bounds for Black Box Complexity 120

10 Additional Complexity Classes . 127
10.1 Fundamental Considerations . 127
10.2 Complexity Classes Within NP and co-NP 128
10.3 Oracle Classes . 130
10.4 The Polynomial Hierarchy . 132
10.5 BPP, NP, and the Polynomial Hierarchy . 138

11 Interactive Proofs . 145
11.1 Fundamental Considerations . 145
11.2 Interactive Proof Systems . 147
11.3 Regarding the Complexity of Graph Isomorphism Problems . . . 148
11.4 Zero-Knowledge Proofs . 155

12 The PCP Theorem and the Complexity of Approximation
Problems . 161
12.1 Randomized Verification of Proofs . 161
12.2 The PCP Theorem . 164
12.3 The PCP Theorem and Inapproximability Results 173
12.4 The PCP Theorem and APX-Completeness 177

Contents XI

13 Further Topics From Classical Complexity Theory 185
13.1 Overview . 185
13.2 Space-Bounded Complexity Classes . 186
13.3 PSPACE-complete Problems . 188
13.4 Nondeterminism and Determinism in the Context of Bounded

Space . 191
13.5 Nondeterminism and Complementation with Precise Space

Bounds . 193
13.6 Complexity Classes Within P . 195
13.7 The Complexity of Counting Problems . 198

14 The Complexity of Non-uniform Problems 201
14.1 Fundamental Considerations . 201
14.2 The Simulation of Turing Machines By Circuits 204
14.3 The Simulation of Circuits by Non-uniform Turing Machines . . 206
14.4 Branching Programs and Space Bounds . 209
14.5 Polynomial Circuits for Problems in BPP 211
14.6 Complexity Classes for Computation with Help 212
14.7 Are There Polynomial Circuits for all Problems in NP? 214

15 Communication Complexity . 219
15.1 The Communication Game . 219
15.2 Lower Bounds for Communication Complexity 223
15.3 Nondeterministic Communication Protocols 233
15.4 Randomized Communication Protocols . 238
15.5 Communication Complexity and VLSI Circuits 246
15.6 Communication Complexity and Computation Time 247

16 The Complexity of Boolean Functions . 251
16.1 Fundamental Considerations . 251
16.2 Circuit Size . 252
16.3 Circuit Depth . 254
16.4 The Size of Depth-Bounded Circuits . 259
16.5 The Size of Depth-Bounded Threshold Circuits 264
16.6 The Size of Branching Programs . 267
16.7 Reduction Notions . 271

Final Comments . 277

A Appendix . 279
A.1 Orders of Magnitude and O-Notation . 279
A.2 Results from Probability Theory . 283

References . 295

Index . 301

1

Introduction

1.1 What Is Complexity Theory?

Complexity theory – is it a discipline for theoreticians who have no concern
for “the real world” or a central topic of modern computer science?

In this introductory text, complexity theory is presented as an active area
of computer science with results that have implications for the development
and use of algorithms. Our study will lead to insights into the structure of
important optimization problems and will explore the borders of what is al-
gorithmically “possible” with reasonable resources. Since this text is also es-
pecially directed toward those who do not wish to make complexity theory
their specialty, results that do not (yet) have a connection to algorithmic
applications will be omitted.

The areas of complexity theory on the one hand and of the design and
analysis of efficient algorithms on the other look at algorithmic problems from
two opposing perspectives. An efficient algorithm can be directly applied to
solve a problem and is itself a proof of the efficient solvability of the problem.
In contrast, in complexity theory the goal is to prove that difficult problems
cannot be solved with modest resources. Bearers of bad news are seldom
welcome, and so it is that the results of complexity theory are more difficult
to communicate than a better algorithm for an important problem. Those
who do complexity theory are often asked such questions as

• “Why are you pleased with a proof that a problem is algorithmically dif-
ficult? It would be better if it had an efficient algorithmic solution.”

• “What good are these results? For my particular applied problem I need
an algorithmic solution. Now what do I do?”

Naturally, it would be preferable if a problem proved to be efficiently algo-
rithmically solvable. But whether or not this is the case is not up to us. Once
we have agreed upon the rules of the game (roughly: computers, but more
about that later), every problem has a well-defined algorithmic complexity.
Complexity theory and algorithm theory are both striving to estimate this

2 1 Introduction

algorithmic complexity and so to “discover the truth”. In this sense, the joy
over a proof that a problem is not efficiently solvable is, just like the joy over
the design of an efficient algorithm, the joy of finding out more about the true
algorithmic complexity.

Of course, our reaction to the discovery of truths does depend on whether
hopes were fulfilled or fears confirmed. What are the consequences when we
find out that the problem we are investigating is not efficiently solvable? First,
there is the obvious and very practical consequence that we can with good
reason abandon the search for an efficient algorithm. We need no longer waste
our time with attempts to obtain an unreachable goal. We are familiar with
this from other sciences as well. Reasonable people no longer build “perpetual
motion machines”, and they no longer try to construct from a circle, using
only straight edge and compass, a square with the same area (the proverbial
quadrature of the circle). In general, however, people have a hard time with
impossibility results. This can be seen in the large number of suggested designs
for perpetual motion machines and the large number of attempts to square a
circle that are still being made.

Once we have understood that we must accept negative results as well
as positive results, and that they save us unnecessary work, we are left with
the question of what to do. In the end, we are dealing with an algorithmic
problem the solution to which is important for some particular application.
Fortunately, problems in most applications are not unalterably determined.
It is often tempting to formulate a problem in a very general form and to
place very strict demands on the quality of the solution. If such a general
formulation has an efficient solution, great. But when this is not the case, we
can often specialize the problem (graphs that model street systems will have
low degree because there is a limit on the number of streets that can meet at
a single intersection), or perhaps a weaker form of solution will suffice (almost
optimal may be good enough). In this way we come up with new problems
which are perhaps efficiently algorithmically solvable. And so impossibility
proofs (negative results) help us find the problems that are (perhaps “just
barely”) efficiently solvable.

So complexity theory and the design and analysis of efficient algorithms
are the two areas of computer science which together fathom the borders
between what can and cannot be done algorithmically with realistic resource
requirements. There is, of course, a good deal of “cross-pollination” between
the two areas. Often attempts to prove the impossibility of an efficient solution
to a problem have so illuminated the structure of the problem that efficient
algorithms have been the result. On the other hand, failed attempts to design
an efficient algorithm often reveal just where the difficulty of a particular
problem lies. This can lead to ideas for proving the difficulty of the problem.
It is very often the case that one begins with a false conjecture about the
degree of difficulty of a problem, so we can expect to encounter startling
results in our study of the complexity of problems.

1.1 What Is Complexity Theory? 3

As a result of this introductory discussion we maintain that

The goal of complexity theory is to prove for important problems that
their solutions require certain minimum resources. The results of com-
plexity theory have specific implications for the development of algo-
rithms for practical applications.

We have up until now been emphasizing the relationship between the areas
of complexity theory and algorithm design. Now, however, we want to take a
look at the differences between these areas. When designing an algorithm we
“only” need to develop and analyze one algorithm. This provides an upper
bound for the minimal resource requirements with which the problem can
be solved. Complexity theory must provide lower bounds for the minimally
necessary resource requirements that every algorithm that solves the problem
must use. For the proof of an upper bound, it is sufficient to design and
analyze a single algorithm (and algorithms are often designed to support the
subsequent analysis). Every lower bound, on the other hand, is a statement
about all algorithms that solve a particular problem. The set of all algorithms
for a problem is not a very structured set. Its only structural characteristic is
that the problem be solved. How can we make use of this characteristic? An
obvious way to start is to derive from the structure of the problem statements
that restrict the set of algorithms we must consider. A specific example: It
seems clear that the best algorithms for matrix multiplication do not begin
by subtracting matrix elements from each other. But how does one prove
this? Or is a proof unnecessary, since the claim is so obvious? Quite the
opposite: The best algorithms known for matrix multiplication do in fact begin
by subtracting matrix elements (see, for example, Schönhage, Grotefeld, and
Vetter (1999)). This clearly shows the danger in drawing very “obvious” but
false conclusions. Therefore,

In order to prove that the solution of a particular problem requires cer-
tain minimal resources, all algorithms for the problem must be consid-
ered. This is the source of the main difficulty that impedes achieving
the goals of complexity theory.

We now know what kind of results we desire, and we have indicated that
they are difficult to come by. It sounds as if we want to excuse in advance the
absence of results. This is indeed the case:

None of the most important problems in complexity theory have been
solved, but along the way to answering the central questions many
notable results have been achieved.

How do we imagine this situation? The cover of the classic book by
Hopcroft and Ullman (1979), which includes an introduction to complexity
theory, shows a picture in which a curtain in front of the collection of truths

4 1 Introduction

of complexity theory is being lifted with the help of various results, thus al-
lowing a clear view of the results. From our perspective of complexity theory,
the curtain has so far only been pushed aside a bit at the edges, so that we
can clearly see some “smaller truths”. Otherwise, the opaque curtain has been
replaced by a thinner curtain through which we can recognize a large portion
of the truth, but only in outline and with no certainty that we are not falling
prey to an optical illusion.

What does that mean concretely? Problems that are viewed as difficult
have not actually been proved to be difficult, but it has been shown that
thousands of problems are essentially equally difficult (in a sense that will
be made precise later). An efficient solution to any one of these thousands of
problems implies an efficient solution to all the others. Or stated another way:
a proof that any one of these problems is not efficiently solvable implies that
none of them is. Thousands of secrets have joined together to form one great
mystery, the unmasking of which reveals all the secrets. In this sense, each
of these secrets is just as central as every other and just as important as the
great mystery, which we will later refer to as the NP �= P-problem. In contrast
to many other areas of computer science,

Complexity theory has in the NP �= P-problem a central challenge.

The advantage of such an important and central problem is that along the
way to its solution many important results, methods, and even new research
areas are discovered. The disadvantage is that the solution of the central
problem may be a long time in coming. We can learn something of this from
the 350-year search for a proof of Fermat’s Last Theorem (Singh (1998) is
recommended for more about that topic). Along the way to the solution, deep
mathematical theories were developed but also many false paths were followed.
Only because of the notoriety of Fermat’s Last Theorem was so much effort
expended toward the solution to the problem. The NP �= P-problem has taken
on a similar role in computer science – but with an unfortunate difference:
Fermat’s Last Theorem (which says that there are no natural numbers x, y, z,
and n with n ≥ 3 such that xn +yn = zn) can be understood by most people.
It is fascinating that a conjecture that is so simple to formulate occupied
the world of mathematics for centuries. For the role of computer science, it
would be nice if it were equally simple to explain to a majority of people the
complexity class P and especially NP, and the meaning of the NP �= P-problem.
Alas, this is not the case.

We will see that in the vicinity of the NP �= P-problem important and beau-
tiful results have been achieved. But we must also fear that much time may
pass before the NP �= P-problem is solved. For this reason, it is not necessarily
the best strategy to aim directly for a solution to the problem. Yao (2001)
compared our starting position to the situation of those who 200 years ago
dreamed of reaching the moon. The strategy of climbing the nearest tree or
mountain brings us closer to the moon, but it doesn’t really bring us any
closer to the goal of reaching the moon. The better strategy was to develop

1.2 Didactic Background 5

ever better means of transportation (bicycles, automobiles, airplanes, rock-
ets). Each of these intermediate steps represented an earth moving discovery.
So it is with complexity theory at the beginning of the third millennium: we
must search for intermediate steps and follow suitable paths, even though we
can never be certain that they will lead to our goal.

Just as those who worked on Fermat’s Last Theorem were “sure” that the
conjecture was true, so it is that today the experts believe that NP �= P and,
therefore, that all of the essentially equally difficult problems mentioned above
are not efficiently solvable. Why is this so? From the opposite assumption that
NP = P one can derive consequences that contradict all our convictions, even
though they have not been proven false. Strassen (1996) has gone so far as to
elevate the NP �= P-conjecture above the status of a mathematical conjecture
and compared it with a physical law (such as E = mc2). This, by the way,
opens up the possibility that the hypothesis that NP �= P is true but not
provable with our proof techniques. But at this point we are far from being
able to discuss this background seriously. Our main conclusion is that it is
reasonable to build a theory under the hypothesis that NP �= P.

Many results in complexity theory assume solidly based but unproven
hypotheses, such as NP �= P.

But what if NP = P? Well, then we must make fundamental modifications
to many of our intuitions. Many of the results discussed here would in this
case have other interpretations, but most would not become worthless. In
general, complexity theory forms an intellectual challenge that differs from
the demands of other areas of computer science. Complexity theory takes its
place in the scientific landscape among those disciplines that

seek to probe the boundaries of what is possible with available re-
sources.

Here the resources are such things as computation time and storage space.
Anyone who is interested in the boundaries of what is (and is not) practically
feasible with computers will find that complexity theory provides important
answers. But those who come to complexity theory only wanting to know
pragmatically if the problem they are interested in can be efficiently solved
have also come to the right place.

1.2 Didactic Background

The main goal of this text is to provide as many as possible with a comfortable
introduction to modern complexity theory. To this end a number of decisions
were made with the result that this text differs from other books on the
subject.

Since complexity theory is a polished theory with many branches, some
selection of topics is unavoidable. In our selection, we have placed a premium

6 1 Introduction

on choosing topics that have a concrete relationship to algorithmic problems.
After all, we want the importance of complexity theory for modern computer
science to be clear. This comes at the cost of structural and abstract branches
of complexity theory, which are largely omitted. In Section 1.3 we discuss in
more detail just which topics are covered.

We have already discussed the difficulties of dealing with negative results
and the relationship to the area of algorithm design. With a consistent per-
spective that is markedly algorithmic, we will – whenever it is possible and
reasonable – present first positive results and only then derive consequences
of negative results. For this reason, we will often quantify results which are
typically presented only qualitatively.

In the end, it is the concept of nondeterminism that presents a large hurdle
that one must clear in order to begin the study of complexity theory. The usual
approach is to first describe nondeterministic computers which “guess” the
correct computation path, and therefore can not actually be constructed. We
have chosen instead to present randomization as the key concept. Randomized
algorithms can be realized on normal computers and the modern development
of algorithms has clearly shown the advantages of randomized algorithms (see
Motwani and Raghavan (1995)). Nondeterminism then becomes a special case
of randomization and therefore an algorithmically realizable concept, albeit
one with an unacceptable probability of error (see Wegener (2002)). Using this
approach it is easy to derive the usual characterizations of nondeterminism
later.

We will, of course, give complete and formal proofs of our results, but
often there are ugly details that make the proofs long and opaque. The essen-
tial ideas, however, are usually shorter to describe and much clearer. So we
will include, in addition to the proofs, discussions of the ideas, methods, and
concepts involved, in the hope that the interplay of all components will ease
the introduction to complexity theory.

1.3 Overview

In Section 1.1 we simplified things by assuming that a problem is either algo-
rithmically difficult or efficiently solvable. All concepts that are not formally
defined must be uniquely specified. This begins already with the concept of an
algorithmic problem. Doesn’t the difficulty of a problem depend on just how
one formulates the problem and on the manner in which the necessary data
are made available? In Chapter 2 we will clarify essential notions such as al-
gorithmic problem, computer, computation time, and algorithmic complexity.
So that we can talk about some example problems, several important algo-
rithmic problems and their variants will also be introduced and motivated. To
avoid breaking up the flow of the text, a thorough introduction to O-notation
has been relegated to the appendix.

1.3 Overview 7

In Chapter 3 we introduce randomization. We discuss why randomized
algorithms are for many applications an extremely useful generalization of de-
terministic algorithms – provided the probability of undesirable results (such
as computation times that are too long or an incorrect output) is vanishingly
small. The necessary results from probability theory are introduced, proved,
and clarified in an appendix. In the end we arrive at the classes of problems
that we consider to be efficiently solvable.

The number of practically relevant algorithmic problems is in the thou-
sands, and we would despair if we had to treat each one independently of
the others. In addition to algorithmic techniques such as dynamic program-
ming that can be applied to many problems, there are many tight connections
between various problems. This is not surprising when we look at several vari-
ations on the same problem, but even problems that on the surface appear
very different can be closely related in the following sense. Problem A can
be solved with the help of an algorithmic solution to problem B in such a
way that we need not make too many calls to the algorithm for B and the
additional overhead is acceptable. This implies that if B is efficiently solvable,
then A certainly is. Or said in another way: B cannot be efficiently solvable if
A is algorithmically difficult. In this way we have used an algorithmic concept
(which we will call reduction) to derive the algorithmic difficulty of one prob-
lem from the algorithmic difficulty of another. In Chapter 4, this approach
will be formalized and practiced with various examples. Of special interest
to us will be classes of problems for which every problem can play the role
of A in the discussion above and also every problem can play the role of B.
Then either all of these problems are efficiently solvable or none of them is.
In Chapter 5 we introduce the theory of NP-completeness which leads to the
class of problems already discussed in Section 1.1, and to which belong thou-
sands of practically relevant problems that are either all efficiently solvable
or all impossible to solve efficiently. The first possibility is equivalent to the
property NP = P and the second to NP �= P. This makes it clear why the
NP �= P-problem plays such a central role in complexity theory. Now the re-
ductions introduced in Chapter 4 receive their true meaning, since they are
used to show that the problems considered there belong to this class of prob-
lems. In Chapter 6 we treat the design of such reductions in a more systematic
manner.

Chapters 7 and 8 are dedicated to the complexity analysis of difficult
problems. We will investigate how one can determine the dividing line be-
tween efficiently solvable and difficult variations of a problem. The important
special case of approximation problems is handled in Chapter 8. With op-
timization problems we can relax the demand that we compute an optimal
solution if we can be satisfied with an “almost” optimal solution, in which
case “almost” must be quantified. For a few problems, results from previous
chapters lead relatively easily to results for such approximation problems. To
obtain further results by means of reductions, it is necessary to introduce a
generalized notion of approximation preserving reduction. Quite a number

8 1 Introduction

of approximation problems can be dealt with in this manner; nevertheless,
there are also important (and presumably difficult) approximation problems
that elude all these methods. Classical complexity theory at this point runs
up against an insurmountable obstacle; newer developments are presented in
Chapters 11 and 12.

Complexity theory must respond to all developments in the design of ef-
ficient algorithms, in particular to the increased use of randomized search
heuristics that are not problem specific, such as simulated annealing and ge-
netic algorithms. When algorithms do not function in a problem-specific way,
our otherwise problem-specific scenario is no longer appropriate. A more ap-
propriate “black box scenario” is introduced in Chapter 9. In this scenario we
have the opportunity to determine the difficulty of problems directly, without
any complexity theoretic hypotheses.

Not until the early 1990’s when the enormous efforts of many researchers
led to the so-called PCP Theorem (probabilistically checkable proofs) was it
possible to overcome the previously discussed obstacle in dealing with ap-
proximation problems. But even now, over a decade after the discovery of this
fundamental theorem, not all of its consequences have been worked out, and
the result is still being sharpened. On the other hand, there is still no proof
of even the basic variation of the PCP Theorem that can be presented in a
textbook. (A treatment of this theorem in a special topics course required 12
two-hour sessions.) Here we will merely describe the path to the PCP Theorem
and the central results along this path.

Not until Chapter 10 will we take a brief look at structural complexity
theory. We will investigate the inner structure of the complexity class NP and
develop a logic-oriented view of NP. From this perspective it is possible to
derive generalizations of NP which form the polynomial hierarchy. This will
provide a better taxonomy for the classes that depend on randomized algo-
rithms. We also obtain new hypotheses which have a strong basis, although
not as strong as that for the NP �= P-hypothesis. Later (in Chapters 11 and 14)
we will base claims about practically important problems on these hypotheses.

Proofs have the property that they are much easier to verify than to con-
struct. Thus it is possible to understand in a reasonable amount of time an
entire textbook, even though the discovery of the results it contains required
many researchers and many years. Generally, proofs are not presented in a
formal and logically correct manner (supported only by axioms and a few
inference rules); instead, authors attempt to convince their readers with less
formal arguments. This would be easier to do using interactive communica-
tion (which can be better approximated in a lecture than in a textbook or
via e-learning). Teachers since the time of Socrates have presented proofs to
students in the form of such dialogues. Chapter 11 contains an introduction to
interactive proof systems. What does this have to do with the complexity of
problems? We measure the complexity in terms of how much communication
(measured in bits and communication rounds, in which the roles of speaker
and listener alternate) and how much randomization suffice so that someone

1.3 Overview 9

with unlimited computational resources who knows a proof of some property
(e.g., the shortest route in a traveling salesperson problem) can convince some-
one with realistically limited resources. This original, but seemingly useless
game, turns out to have a tight connection to the complexity of the problems
we have been discussing. There are even proof dialogues by which the second
person can be convinced of a certain property without learning anything new
about the proof (so-called zero-knowledge proofs). Such dialogues have an ob-
vious application: The proof could be used as password. The password could
then be efficiently checked, without any loss of security, since no information
about the password itself need be exchanged. In other words, a user is able to
convince the system that she knows her password, without actually providing
the password.

After this preparation, the PCP Theorem is treated in Chapter 12 and
the central ideas of the proof are discussed. The PCP Theorem will then be
used to achieve better results about the complexity of central approximation
problems.

Chapter 13 offers a brief look at further themes in classical complexity the-
ory: space-bounded complexity classes, the complexity theoretic classification
of context sensitive languages, the Theorems of Savitch and of Immerman
and Szelepcsényi, PSPACE-completeness, P-completeness (that is, problems
that are efficiently solvable but inherently sequential), and #P-completeness
(in which we are concerned with the complexity of determining the number
of solutions to a problem).

Chapter 14 treats the complexity theoretic difference between software
and hardware. An algorithm (software) works on inputs of arbitrary length
while a circuit (hardware) can only process inputs of a fixed length. While
there is a circuit solution for every Boolean function in disjunctive normal
form (DNF), there are algorithmic problems that are not solvable at all (e.g.,
the Halting Problem, software verification). The question here will be whether
algorithmically difficult problems can have small circuits.

Chapter 15 contains an introduction to the area of communication com-
plexity. Once computer science was defined as the science of processing in-
formation. Today the central role of communication is beyond dispute. By
means of the theory of communication complexity it has been possible to
reduce many very different problems to their common communication core.
We will present the fundamental methods of this theory and some example
applications.

Boolean (or more general) finite functions clearly play an important role
in computer science. There are important models for their computation or
representation (circuits, formulas, branching programs – also called binary
decision diagrams or BDDs). Their advantage is that they are independent of
any short term changes in technology and therefore provide clearly specified
reference models. This makes concrete bounds on the complexity of specific
problems interesting. Here, too, lower bounds are hard to come by. In Chap-

10 1 Introduction

ter 16, central proof methods are introduced and, together with methods from
communication complexity, applied to specific functions.

1.4 Additional Literature

Since we have restricted ourselves in this text to an introduction to com-
plexity theory, and in particular have only treated structural complexity very
briefly, we should mention here a selection of additional texts. To begin with,
two classic monographs must be cited, each of which has been very influen-
tial. The first of this is the general introduction to all areas of theoretical
computer science by Hopcroft and Ullman (1979) with the famous cover pic-
ture. (An updated version of this text by Hopcroft, Motwani, and Ullman
appeared in 2001.) The book by Garey and Johnson (1979) was for many
years the NP-completeness book, and is still a very good reference due to
the large number of problems that it treats. The Handbook of Theoretical
Computer Science edited by van Leeuwen (1990) provides above all a good
placement of complexity theory within theoretical computer science more gen-
erally. This book, as well as books by Papadimitriou (1994) and Sipser (1997),
treat many aspects of computational complexity. Those looking for a text
with an emphasis on structural complexity theory and its specialties are re-
ferred to books by Balcázar, Dı́az, and Gabarró (1988), Hemaspaandra and
Ogihara (2002), Homer (2001), and Wagner and Wechsung (1986). More in-
formation about the PCP Theorem can be found in the collection edited by
Mayr, Prömel, and Steger (1998). The book by Ausiello, Crescenzi, Gambosi,
Kann, Marchetti-Spaccamela, and Protasi (1999) specializes in approximation
problems. Hromkovič (1997) treats aspects of parallel computation and mul-
tiprocessor systems especially thoroughly. The complexity of Boolean func-
tions with respect to circuits and formulas is presented by Wegener (1987)
and Clote and Kranakis (2002), and with respect to branching programs and
BDDs by Wegener (2000). The standard works on communication complexity
are Hromkovič (1997) and Kushilevitz and Nisan (1997).

2

Algorithmic Problems and Their Complexity

2.1 What Are Algorithmic Problems?

The notion of “problem” as it is commonly used is so general that it would
be impossible to formalize. In order to restrict ourselves to something more
manageable, we will consider only “algorithmic problems”. By an algorithmic
problem, we mean a problem that is suitable for processing by computers and
for which the set of correct results is unambiguous. The problem of finding a
just sentence for a defendant is not algorithmic since it depends on matters of
judicial philosophy and is therefore not suitable for processing by computers.
On the other hand, the problem of translating a German text into another
language is suitable for processing by computers, but in this case it is not
clear which results should be considered correct. So in the sense of complexity
theory, the translation problem is not an algorithmic problem either. A good
example of an algorithmic problem is the computation of a shortest path from
s to t in a graph in which s and t are among the vertices, and each edge is
associated with a positive cost (which we may interpret as distance or travel
time).

An algorithmic problem is defined by

• a description of the set of allowable inputs, each of which can be repre-
sented as a finite sequence over a finite alphabet (the symbol set of our
computer); and

• a description of a function that maps each allowable input to a non-empty
set of correct outputs (answers, results), each of which is also a finite
sequence over a finite alphabet.

Note that according to our definition, a problem does not consist of a single
question to be answered but of a family of questions. For a given problem these
questions are typically related and have a simple “fill-in-the-blank” structure.
Each input (also called an instance) fills in the blanks differently, but otherwise
the questions are identical. Often this is described as in the following example:

12 2 Algorithmic Problems & Their Complexity

Instance: A positive integer n.
Question: Is n prime?

By restricting to finite sequences and finite alphabets we have matched the
capabilities of digital computers. For any processing of arbitrary real numbers,
it is necessary to approximate them in one way or another. Often algorith-
mic problems like the shortest path problem have short informal descriptions
that do not specify the input format. Graphs can be represented as adja-
cency matrices or adjacency lists, for example, and the distance values can
be represented in binary or in decimal. The design of a good algorithm for a
problem can depend heavily upon the input format. This is especially the case
if we want to measure the computation time very precisely. It can be shown,
however, that often all “reasonable” input formats for “a” problem lead to
algorithmically similar problems. (The adjacency matrix of a graph can be
very efficiently computed from adjacency lists and vice versa, for example.)
We will therefore only describe the input format as precisely as is necessary.
In particular, we will specify the parameters that we consider the computa-
tion time to depend on (the number of vertices in a graph presented as an
adjacency matrix, or the number of vertices and edges in a graph represented
by adjacency lists). Artificial lengthenings of the inputs, such as the unary
representation of numbers (in which n is represented by n+1 0’s), will not be
allowed unless we explicitly say the opposite. To be precise, we must also first
check each input to make sure it is allowable (syntactically correct). Since this
can be done efficiently for all the problems treated in this book, we will not
discuss this aspect any further. Instead, we will try to concentrate on the core
of the problem.

It is worth mentioning that we are only distinguishing between correct and
incorrect solutions. Thus all correct outputs are “equally good”. This reflects
our goal of making the required resources, especially the required computation
time, the focus of our observations. Of course, correct outputs (paths from s
to t) can be of different quality (length). The obvious thing to do then is
to redefine “correct” so that only those outputs of optimal quality (shortest
paths) are considered to be correct outputs. In the case of difficult problems,
we may declare all outputs that fall short of optimal quality by at most a
certain percentage to be correct (approximation problems).

Although algorithmic problems can have several correct answers, we will
always be satisfied with a single correct answer. If there are many correct an-
swers, the listing of all correct answers may take too long. For example, cities
like Manhattan can be represented as numeric grids {0, . . . , n} × {0, . . . , m}
where each (i, j) is an intersection and the streets run horizontally and verti-
cally between intersections. If n ≤ m, then there are at least 2n shortest paths
from (0, 0) to (n, m), and listing them all would be too much work even for
modestly sized n. In most applications, a description of a single shortest path
suffices. We can, however, change the problem so that we now only consider
lists of all shortest paths to be correct solutions, or we could demand a list of

2.2 Some Important Algorithmic Problems 13

min{a, b} shortest paths, where a is the actual number of shortest paths and
b is some specified bound. Since formally in each case we are looking for one
of potentially many correct answers, we refer to such a problem as a search
problem. If, as in the case of the search for a shortest path, we are looking
for a solution that is in some way optimal, we will refer to the problem as an
optimization problem. Often, it is sufficient to compute the value of an opti-
mal solution (e.g., the length of a shortest path). These variants are called
evaluation problems. Evaluation problems always have unique solutions. In
the special case when the only possible answers are 0 (no) and 1 (yes), and we
must decide which of these two possibilities is correct, we speak of a decision
problem. Decision problems arise naturally in many situations: Does white
have a winning strategy from a given configuration of a chess board? Is the
given number a prime number? Is it possible to satisfy the prescribed condi-
tions? The important special case of determining if a program is syntactically
correct for a particular programming language (the word problem) has led to
the alternative terminology for decision problems, namely (formal) languages.
Optimization problems have obvious variants that are decision problems: Is
the length of the shortest path from s to t bounded by l?

Algorithmic problems include all problems that can be handled by com-
puters and for which we can unambiguously distinguish between correct
and incorrect solutions. Among these are optimization problems and
problems with unique solutions such as evaluation problems and deci-
sion problems. Different input formats for the same “problem” lead to
different algorithmic problems, but typically these problems are algo-
rithmically very similar.

2.2 Some Important Algorithmic Problems

In order to have enough examples at our disposal, we now want to introduce
ten important families of problems:

• traveling salesperson problems;
• knapsack problems (the best selection of objects);
• partitioning problems (bin packing problems, scheduling problems);
• surveillance (or covering) problems;
• clique problems;
• team building problems;
• optimization of flows in networks;
• championship problems in sports leagues;
• verification problems; and
• number theoretic problems (primality testing, factoring).

This list contains the most well-known algorithmic problems. They have
simple and clear descriptions and, for the most part, great practical impor-

14 2 Algorithmic Problems & Their Complexity

tance. Some problems rarely arise in their “pure” forms but are frequently at
the core of other problems that arise in applications.

The traveling salesperson problem (TSP) is the problem of finding a short-
est round trip circuit that visits n given cities and returns to its starting
point. The cities are denoted by 1, . . . , n and the distances between the cities
by di,j , 1 ≤ i, j ≤ n. The distances are chosen from N ∪ {∞}, and the value
∞ represents that there is no direct connection between two particular cities.
A circuit is a permutation π of {1, . . . , n} so that the cities are visited in the
order π(1), π(2), . . . , π(n), π(1). The cost of a circuit π is given by

dπ(1),π(2) + dπ(2),π(3) + · · · + dπ(n−1),π(n) + dπ(n),π(1)

and a circuit with minimal cost is to be computed. There are many possible
variations on this problem. TSP (or TSPopt) denotes the general optimiza-
tion problem; TSPeval and TSPdec denote the related evaluation and decision
problems. For the latter, the input includes a bound D, and it must be deter-
mined whether there is a circuit that has cost not exceeding D. We will also
consider the following restricted variants:

• TSPsym: the distances are symmetric (di,j = dj,i);
• TSP∆: the distances satisfy the triangle inequality, that is, di,j ≤ di,k+dk,j ;
• TSPd-Euclid: the cities are points in d-dimensional Euclidean space Rd and

the distances correspond to Euclidean distance (L2 norm);
• TSPN : the distances come from {1, . . . , N};
• DHC (Directed Hamiltonian Circuit): the distances come from {1,∞}, and

the usual input format is then a directed graph containing only those edges
that have a cost of 1;

• HC = DHCsym: the symmetric variant of DHC, for which the usual input
format is an undirected graph containing only those edges that have a cost
of 1.

Further variations are introduced in the monograph by Lawler, Lenstra,
Rinnooy Kan, and Shmoys (1985) that deals exclusively with TSP. For all
versions there is an optimization variant, an evaluation variant, and a deci-
sion variant, although for DHC and HC we only consider the decision variant
(whether the graph contains a Hamiltonian circuit). The inputs consist of the
number n and the n(n− 1) distances, but it is customary to express the com-
putation time in terms of n. For DHC and HC, the number of edges m is also
relevant. It is important to note that neither n nor m measure the length of
the input over a finite alphabet, since this depends on the size of the distances
di,j . Using the usual binary representation of natural numbers, di,j has length
�log(di,j + 1)�.

For TSP we have listed as examples many variants (although far from
all), and we have also discussed the relevant parameters more closely (n, or
(n, m), or essentially the bit length of the input). For the remaining problems,
we will introduce only the most important variants and mention the relevant

2.2 Some Important Algorithmic Problems 15

parameters only when they do not arise in a manner that is similar to our
discussion of TSP.

Travelers who want to stay within a limit of 20 kg per piece of luggage
established by an airline are dealing with the knapsack problem (Knapsack).
The weight limit W ∈ N must be observed and there are n objects that one
would like to bring along. The ith object has weight wi ∈ N and utility ui ∈ N.
Travelers are not allowed to take objects with a total weight that exceeds W .
Subject to this restriction, the goal is to maximize the total utility of the
selected objects. Here, too, there are variants in which the size of the utility
values and/or the weights are bounded. In the general case, the objects have
different utility per unit weight. Knapsack∗ denotes the special case that ui =
wi for all objects. In this case, the goal is merely to approach the weight limit
as closely as possible without going over. If in addition W = (w1 + w2 + · · ·+
wn)/2, and we consider the decision problem of whether we can achieve the
maximum allowable weight, the resulting problem is equivalent to the question
of whether the set of objects can be divided into two groups of the same
total weight. For this reason, this special case is called the partition problem
(Partition). A book has also been dedicated to the knapsack problem, see
Martello and Toth (1990).

The partition problem is also a special case of the bin packing problem
(BinPacking), in which bins of size b are available, and we want to pack n
objects of sizes u1, u2, . . . , un into as few bins as possible. But we can also
view BinPacking as a very special case of the scheduling problem. The class
of scheduling problems is nearly impossible to gain an overview of (Lawler,
Lenstra, Rinnooy Kan, and Shmoys (1993), Pinedo (1995)). In each case tasks
must be divided up among people or machines subject to different side con-
straints. Not all people are suited for all tasks, different people may take
different amounts of time to complete the same task, certain tasks may need
to be completed in a specified order, there may be earliest start times or lat-
est completion times (deadlines) specified, and there are different optimization
criteria that can be used. As we go along, we will introduce several special
cases.

A typical surveillance problem is the art gallery problem. The challenge
is to monitor all walls of an art gallery with as few cameras as possible. We
will restrict our attention to surveillance problems on undirected graphs, in
which case they are often called covering problems. In the vertex cover problem
(VertexCover), each vertex monitors all edges that are incident to it, and
all edges are to be monitored with as few vertices as possible. In the edge
cover problem (EdgeCover), the roles are reversed: each edge monitors the
two incident vertices, and the vertices are to be monitored with as few edges
as possible.

The vertices of a graph can be used to represent people; the edges, to rep-
resent friendships between people. A clique is defined as a group in which each
person likes each other person in the group. The following problems do not
appear to have direct connections to applications, but they occur frequently as

16 2 Algorithmic Problems & Their Complexity

parts of larger problems. In the clique cover problem (CliqueCover), the ver-
tices of a graph must be partitioned into as few sets as possible, in such a way
that each set forms a clique. In the clique problem (denoted Clique), a largest
possible clique is to be computed. An anti-clique (“no one likes anyone”, be-
tween any two vertices there is not an edge) is called an independent set, and
the problem of computing a largest independent set is IndependentSet.

Team building can mean dividing people with different capabilities into
cooperative teams in which the members of the team must get along. For
k-DM (k-dimensional matching, i.e., the building of teams of size k), we are
given k groups of people (each group representing one of the k capabilities),
and a list of potential k-member teams, each of which includes one person
from each of the capability groups. The goal is to form as many teams as
possible with the restriction that each person may only be assigned to one
team. 2-DM is also known as the marriage problem: the two “capabilities”
are interpreted as the two genders, a potential team as a “potential happy
marriage”, and the goal is to maximize the number of happy heterosexual
marriages. This description of the problem does not, of course, reflect the way
the problem arises in actual applications.

In the network flow problem (NetworkFlow) one seeks to maximize flows
in networks – another large class of problems, see Ahuja, Magnanti, and Or-
lin (1993). We are only interested in the basic problem in which we seek to
maximize the flow from s to t in a directed graph. The flow f(e) along an
edge e must be a non-negative integer bounded above by the capacity c(e) of
the edge. The total flow that reaches a vertex v �∈ {s, t}, i.e., the sum of all
f(e) with e = (·, v), must equal the total flow that leaves v, i.e., the sum of all
f(e) with e = (v, ·) (Kirchhoff rule). The source vertex s cannot be reached
via any edge, and the terminal vertex (sink) t cannot be left via any edge.
Under these conditions, the flow from s to t, i.e., the sum of all f(e) with
e = (s, ·) is to be maximized. One can easily argue that this model is not
suited for maximizing traffic flow, but we will see that flow problems arise in
many different contexts.

The problems we have considered to this point have the property that their
optimization variants seem to be the most natural version, while the evaluation
and decision variants are restricted problems, the solutions to which only cover
some aspects of the problem. The championship problem (Championship) is
fundamentally a decision problem. A fan wonders at a particular point in the
season whether it is (at least theoretically) possible for his favorite team to
be the league champion. Given are the current standings for each team and
a list of the games that remain to be played. The chosen team can become
the champion if there are potential outcomes to the remaining games so that
in the end no other team has more points (if necessary, the team may need
to also have the best goal differential). In addition, one of the following rules
must specify how points are awarded for each game:

2.2 Some Important Algorithmic Problems 17

• The a-point rule: After each game a points are awarded (a ∈ N), and every
partition of a into b points for Team 1 and a − b points for Team 2 with
0 ≤ b ≤ a and b ∈ N is possible.

• The (0, a, b)-point rule: The only possibilities are b : 0 (home victory), a : a
(tie), and 0 : b.

In fact, in various sports, various point rules are used: the 1-point rule
is used in sports that do not permit ties (basketball, volleyball, baseball,
. . .). The 2-point rule (equivalent to the (0, 1, 2)-point rule) is the classic
rule in sports with ties (team handball, German soccer until the end of the
1994–95 season). The 3-point rule is used in the German Ice Hockey League
(DEL) which awards 3:0 for a regulation win, 2:1 for a win in overtime or
after penalty shots. The (0, 1, 3)-point rule is currently used in soccer. Further
variations arise if the remaining games are divided into rounds, and especially
if the games are scheduled as in the German soccer Bundesliga (see Bernholt,
Gülich, Hofmeister, Schmitt, and Wegener (2002)). This problem, of practical
interest to many sports fans, will also lead to surprising insights.

With the class of verification problems (see Wegener (2000)) we move into
the domain of hardware. The basic question is whether the specification S
and the realization R of a chip describe the same Boolean function. That is,
we have descriptions S and R of Boolean functions f and g and wonder if
f(a) = g(a) for all inputs a. Since we carry out the verification bitwise, we
can assume that f, g : {0, 1}n → {0, 1}. The property f �= g is equivalent to
the existence of an a with (f ⊕ g)(a) = 1 (⊕ = EXOR = parity). So we are
asking whether h = f ⊕ g is satisfiable, i.e., whether h can output a value
of 1. This decision problem is called the satisfiability problem. Here the input
format for h is relevant:

• Satcir assumes the input is represented as a circuit.
• Sat = CNF-Sat = Satcnf assumes the input is represented as a con-

junction of clauses (which are disjunctions of literals), i.e., in conjunctive
(normal) form.

• DNF-Sat = Satdnf assumes the input is represented as a disjunction of
monomials (which are conjunctions of literals), i.e., in disjunctive (normal)
form.

Other representation forms will be introduced later. We will use k-Sat to
denote the special case that all clauses have exactly k literals. For Sat and
k-Sat there are also the optimization versions Max-Sat and Max-k-Sat, in
which the goal is to find an assignment for the variables that satisfies as many
of the clauses as possible, i.e., one that produces as many clauses as possible
in which at least one of the literals is assigned the value 1. These optimization
problems can no longer be motivated by verification problems, but they will
play a central role in the treatment of the complexity of approximation prob-
lems. In general, we shall see that, historically, new subareas of complexity
theory have always begun with the investigation of new satisfiability problems.

18 2 Algorithmic Problems & Their Complexity

So satisfiability problems are motivated by an important application problem
but also take center stage as “problems for their own sake”.

Modern cryptography (see Stinson (1995)) has a tight connection to num-
ber theoretic problems in which very large numbers are used. Here we must
take note that the binary representation of an input n has a length of only
�log(n + 1)�. Already in gradeschool, most of us learned an algorithm for
adding fractions that required us to compute common denominators, and for
this we factored the denominators into prime factors. This is the problem of
factoring (Fact). Often it suffices to check whether a number is prime (primal-
ity testing). Primes, the problem of deciding whether or not a positive integer
n is prime, was our first example of an algorithmic problem on page 12.

With this colorful bouquet of central and practical algorithmic problems
we can discuss most complexity theoretical questions.

2.3 How Is the Computation Time of an Algorithm

Measured?

A first attempt at a definition of the complexity of an algorithmic problem
might look like the following:

The complexity of an algorithmic problem is the amount of computa-
tion time required by an optimal algorithm.

But after a bit of reflection, this definition proves to be deficient:

• Is there always an optimal algorithm?
• What is in fact the computation time required by an algorithm?
• Is it even clear what an algorithm is?

We need to pursue these questions before we can develop a complexity
theory of algorithmic problems. Sufficient for our purposes will be a largely
intuitive notion of algorithm as an unambiguous set of instructions which (in
dependence on the input for the algorithmic problem under consideration)
specifies the steps that are to be carried out to produce a particular output.
The algorithm is called deterministic if at every moment the next step in
the computation is unambiguously specified. In Chapter 3 we will expand
the notion of algorithm to include randomized algorithms, which can have
the next step in the computation depend on random bits. The description of
“algorithm” that we have chosen allows us the same freedom that those who
design and publish algorithms allow themselves.

The computation time t of an algorithm A for an algorithmic problem still
depends on at least the following parameters:

• the input x,
• the chosen computer C,
• the chosen programming language L,
• the implementation I of the algorithm.

2.3 Measuring Computation Time 19

The dependence of the computation time on the particular input x is
unavoidable and sensible. It is absolutely obvious that “larger” instances (say,
106 cities for TSP) require significantly more computation time than “smaller”
instances (say, only 10 cities). But if computation time is also essentially
dependent upon C, L, and I, and perhaps other parameters, then algorithms
can no longer be sensibly compared. In that case, the most we could do would
be to make statements about the computation time of an algorithm with
respect to a particular computer, a particular programming language, and a
particular implementation. But that sort of statement is rather uninteresting.
In a very short time whatever computer we consider will become outdated.
Even programming languages often have only a short season of interest, and
those in use are constantly being changed. Certainly the computation time
depends on these parameters, but we will see that this dependence is limited
and controllable. Complexity theory and the theory of algorithms have chosen
the following way out of this dilemma:

The notion of computation time will be simplified to that point that it
only depends on the algorithm and the input.

Concretely, this means that we can give the computation time for an al-
gorithm independent of whether we use a 50 year old computer or a modern
one. Furthermore, our observations should remain true for the computers that
will be in use 50 years from now. The goal of this section is to demonstrate
that there is an abstract notion of computation time that has the desired
properties.

Because of past and expected future advances in the area of hardware, we
will not measure computation “time” in units of time, but in terms of the
number of computation steps. We agree on a set of allowable elementary op-
erations, among them the arithmetic operations, assignment, memory access,
and the recognition of the next command to be performed. This model of
computation can be formally defined using register machines, also called ran-
dom access machines (see Hopcroft, Motwani, and Ullman (2001)). We will be
satisfied with the knowledge that every program in every known programming
language for every known computer can be translated into a program for a
register machine and that the resulting loss in efficiency is “modest”. Such a
translation is structurally simple, but very tedious in practice.

The “modest” loss of efficiency can even be quantified. For each known
programming language and computer there is always a constant c so that
the translation of such programs into register machine programs increases
the number of computation steps required by no more than a factor of c.
And what about future computers? It is impossible to say for sure, but the
evidence suggests that the possible effects will be limited. This conviction
is summarized as the Extended Church-Turing Thesis. The classical Church-
Turing Thesis says that all models of computation can simulate one another, so
that the set of algorithmically solvable problems is independent of the model

20 2 Algorithmic Problems & Their Complexity

of computation (which includes both the computer and the programming
language). The Extended Church-Turing Thesis goes one step further:

For any two models of computation R1 and R2 there is a polynomial
p such that t computation steps of R1 on an input of length n can be
simulated by p(t, n) computation steps of R2.

The dependence of p(t, n) on n is only necessary in the case that an algorithm
(like binary search, for example) runs for sublinear time.

Of course, it is not fair to consider all arithmetic operations to be equally
costly computation steps. We consider division (to a fixed number of deci-
mal places) to be more time consuming than addition. Furthermore, the time
actually required depends on the lengths of the numbers involved. If we de-
scend to the level of bits, then every arithmetic operation on numbers of bit
length l requires at least Ω(l) bit operations. For addition and subtraction,
O(l) bit operations are also sufficient, whereas the best known algorithms for
multiplication and division require Θ(l log l log log l) bit operations. (The no-
tation O, Ω, and Θ is defined in Appendix A.1.) For this reason it is fair,
if not quite exact, to assign a cost of l to arithmetic operations on numbers
of length l. This way of doing things leads us to the logarithmic cost model,
which gets its name from the fact that the natural number n has a bit length
of �log(n+1)�. This fair, but cumbersome cost model is only worth the effort
if we actually need to work with very large integers. If on an input of length
l we only use integers of length at most s(l), these logarithmic costs only in-
crease the number of computation steps by at most a factor of O(log(s(l))).
Even for exponentially large integers, this is only a linear factor. Since we will
never consider any algorithms which carry out arithmetic operations on larger
integers than this, it will suffice to simply count the computation steps. This
is referred to as the uniform cost model.

As a result of this discussion and abstraction, we can now speak of the
computation time tA(x) of the algorithm A on the input x. We acknowl-
edge that we are implicitly using a model of computation when we do this.
Nevertheless, computation times like O(n log n) for sorting algorithms and
O((n + m) log n) for Dijkstra’s Algorithm hold for all known computers and
programming languages.

The Extended Church-Turing Thesis must be checked in light of new types
of computers. There is no doubt that it is correct in the context of digital
computers. Even so-called DNA-computers “only” result in smaller chips or
a higher degree of parallelism. This can represent an enormous advance in
practice, but it has no effect on the number of elementary operations. Only
the so-called quantum computers, which are designed to take advantage of
quantum effects (there are many feasibility studies underway, but as yet no
usable quantum computer has been built), allow for a new kind of algorithm,
which can be shown to be incomparable with usual algorithms. In the case of
quantum computation, the complexity theory is far ahead of the construction

2.3 Measuring Computation Time 21

of computers. This branch of complexity theory must, however, be left for
more specialized monographs (see Nielsen and Chuang (2000)).

In the area of digital computers then, upper or lower bounds for register
machines imply similar bounds for all actual computers. Later we will need
yet another model of computation. Register machines have free access (re-
ferred to as random access) to their memory: on input i it is possible to read
the contents of the ith storage cell (formerly called a register). This global
access to storage will cause us problems. Therefore, a very restricted model
of computation will be introduced as an intermediate model. In this model,
computation steps have only local effects, and this is precisely what simplifies
our work.

The Turing machine model goes back to the English logician Alan Turing.
Not only did his work provide the basis for the building of computers, but
during World War II he also led a group that cracked the German secret code
“Enigma”. As in all models of computation, we assume unbounded space
for the storage of data. For a Turing machine, this storage space is divided
into cells which are linearly arranged, and each assigned an integer i ∈ Z

consecutively. This linearly arranged storage space is referred to as a tape. At
each step, the Turing machine has access to one of these tape cells. In addition,
a Turing machine has a separate finite storage space (its “memory”) which it
can access at any time. In a single step, the Turing machine can modify its
memory and the contents of the tape cell it is reading and then move to the
left or right neighboring tape cell. Formally, a Turing machine consists of the
following components:

• a finite state space Q, whereby each q ∈ Q represents a state of the memory,
and so a memory that can hold k bits can be described by Q = {0, 1}k;

• an initial state q0 ∈ Q;
• a finite input alphabet Σ;
• a finite tape alphabet Γ which contains at least the symbols in Σ and an

additional blank symbol b �∈ Σ;
• a program δ : Q × Γ → Q × Γ × {−1, 0, 1}; and
• a set of halting states Q′ ⊆ Q, where δ(q, a) = (q, a, 0) for all (q, a) ∈

Q′ × Γ , but δ(q, a) �= (q, a, 0) for all (q, a) ∈ (Q − Q′) × Γ .

The Turing machine works as follows: Initially, the input x = (x1, . . . , xn) ∈
Σn is in the tape cells 0, 1, . . . , n − 1, and all other cells contain the blank
symbol; the memory is in state q0; and the machine is reading tape cell 0. At
every step, if the machine is in state q, reading symbol a in tape cell i, and
δ(q, a) = (q′, a′, j), then symbol a is replaced by symbol a′, state q is replaced
by state q′, and cell i+ j is read in the next step. Although formally a Turing
machine continues to process when it is in a halting state, the computation
time is defined as the first point in time that the machine reaches a halting
state. For search problems, the output is located in cells 1, . . . , m, where m is
the least positive integer such that tape cell m+1 contains the blank symbol.
For decision problems we can integrate the output into the state by partition-

22 2 Algorithmic Problems & Their Complexity

ing the halting states into two disjoint sets: Q′ = Q+
·∪ Q−. We say that the

input is accepted if the machine halts in a state q ∈ Q+ and is rejected if the
machine halts in a state q ∈ Q−.

Turing machines have the property that in one step of the computation,
only the memory, the tape head position, and the contents of the cell at that
position play a role, and in the next step, only one of the neighboring cells
can be accessed. For a practical application as a computer this is a huge
disadvantage, but for the analysis of the effects of a computation step it is a
decided advantage.

The (standard) Turing machine we have introduced has a single two-way
infinite tape. A generalization to k tapes, such that at any point in time one
tape cell is read on each of the k tapes, and the motion of the tape heads on
different tapes may be in different directions, can be described by a program
δ : Q × Γ k → Q × Γ k × {−1, 0, 1}k. Remarkably, register machines can be
simulated with only modest loss in efficiency by Turing machines with a small
number of tapes (see Schönhage, Grotefeld, and Vetter (1994)). These Turing
machines can then be simulated easily with a quadratic loss of efficiency by
a Turing machine with only one tape (see, for example, Hopcroft, Motwani,
and Ullman (2001)).

From this we see that

For every existing type of computer there is a polynomial p such that,
on an input of length n, t computation steps with respect to the log-
arithmic cost model can be simulated by a Turing machine in p(t, n)
steps.

If we accept the Extended Church-Turing Thesis, then this is also true for
all future digital computers.

2.4 The Complexity of Algorithmic Problems

We let tA(x) denote the computation time of algorithm A on input x in the
unit cost model for a chosen model of computation (for example, register
machines). We can now try to compare two algorithms A and A′ for the same
problem in the following manner: A is at least as fast as A′ if tA(x) ≤ tA′(x)
for all x.

This obvious definition is problematic for several reasons:

• The exact value of tA(x) and therefore the comparison of A and A′ depends
on the model of computation.

• Only for very simple algorithms can we hope to compute tA(x) for all x
and to test the relation tA(x) ≤ tA′(x) for all x.

• Often, when we compare a simple algorithm A with an algorithm A′ that
is more complicated but well-tailored to the problem at hand, we find
that tA(x) < tA′(x) for “small” inputs x but tA(x) > tA′(x) for “large”
inputs x.

2.4 The Complexity of Algorithmic Problems 23

The first and third problems we meet with the simplification that we com-
pare computation times with respect to order of magnitude or asymptotic
rates of growth. We deal with the second problem by measuring the computa-
tion time, not for each input x, but for each input “size” (bit length, number
of vertices in a graph, number of cities for TSP, etc.). Although different
inputs for TSP that have the same number of cities can have very different
length (measured in bits), once we have chosen the meaning of size, we will use
this when we refer to the “length” of an input, which we will denote by |x|.
The most commonly used measurement for computation time is worst-case
runtime:

tA(n) := sup{tA(x) : |x| ≤ n} .

Frequently t∗A(n) := sup{tA(x) : |x| = n} is used, and t∗A = tA when
t∗A is monotonically increasing. This is the case for most algorithms. The
use of tA(n), ensures that the worst case runtime is always a monotonically
increasing function, and this will be useful later.

Now we can describe how we compare two algorithms A and A′ for the
same problem.

The algorithm A is asymptotically at least as fast as A′ if tA(n) =
O(tA′(n)).

This simplification has proved itself (for the most part) to be quite suitable.
But in extreme cases, it is an over-simplification. In applications, for example,
we would consider n log n “for all practical purposes” smaller than 106 · n.
And the worst case runtime treats algorithms like QuickSort (which processes
“most” inputs more quickly than it does the “worst” inputs) very harshly.
One workaround for this is to consider average-case runtime. For a family of
probability distributions qn on the inputs of length n, we define

tqA(n) :=
∑

x:|x|=n

qn(x) · tA(x) .

For another possibility see the discussion of QuickSort in Section 3.2.
But the notion of average computation time does not work well for two

reasons. The main reason is that for most problems we do not know which
probability distributions qn on the inputs are a good model of “reality”. Rather
than achieve unusable results on the basis of a poor estimate of qn, it is more
reasonable (even if more pessimistic) to use the maximal runtime as a measure.
Furthermore, from a pragmatic view, we see that the determination of worst
case runtime is possible for many more algorithms than is the case for average-
case runtime.

Finally we can say that the algorithmic complexity of a problem is f(n)
if the problem can be solved by means of an algorithm A with a worst case
runtime of O(f(n)), and every algorithm for this problem has a worst case

24 2 Algorithmic Problems & Their Complexity

runtime of Ω(f(n)). In this case the algorithm A has the asymptotically min-
imal runtime. We do not define the algorithmic complexity of a problem,
however, because problems do not necessarily have an asymptotically min-
imal runtime. There could be two algorithms A and A′ such that neither
tA(n) = O(tA′(n)) nor tA′(n) = O(tA(n)) hold. (See Appendix A.1 for exam-
ples of such runtimes.) Even when the runtimes of algorithms are asymptoti-
cally comparable, there may not be a best asymptotic runtime. Consider, for
example, algorithms Aε with runtimes 31/εn2+ε + O(n2). Then the runtime
of algorithm Aε is Θ(n2+ε), so Aε is asymptotically better than Aε′ whenever
ε < ε′. But it does not follow from this that there is an algorithm that is
asymptotically at least as good as all of the Aε’s. Indeed, in this example it
is not possible to obtain a better algorithm by combining algorithms from
the family Aε. In the general case, we must be satisfied with giving lower or
upper bounds. In our example, the algorithmic complexity is bounded above
by O(n2+ε) for every ε > 0, and bounded below by Ω(n2 logk n) for every
k ∈ N.

The algorithmic complexity of a problem is bounded above by the
asymptotic worst case runtime of each algorithm that solves the prob-
lem. If every algorithm that solves a problem requires a certain asymp-
totic worst case runtime, this results in a lower bound for the asymp-
totic complexity of the problem. In the case that the upper and lower
bounds are asymptotically the same, we obtain the algorithmic com-
plexity of the problem.

3

Fundamental Complexity Classes

3.1 The Special Role of Polynomial Computation Time

In the last chapter we discussed the difficulties that arise when defining the
algorithmic complexity of problems. In general, there are only upper and lower
bounds for the minimal asymptotic worst case runtime. But in this case the
upper and lower bounds are so close together, that their difference plays no
role in deciding whether or not a problem is efficiently solvable. Therefore,
in the future we will speak of the complexity of algorithmic problems. If the
complexity, as discussed above, is not defined, then we will use upper bounds
for positive statements about the solvability of a problem and lower bounds
for negative statements.

A problem with algorithmic complexity Θ(n2) is more efficiently solvable
than a problem with algorithmic complexity Θ(n3) – but only with respect to
the chosen model of computation. If we choose the random access machine,
or the closely related modern digital computer, as our model of computation,
then the statement above is at least correct for large values of n. But if we
switch to Turing machines, it is possible that the first problem now requires
Θ(n4) steps while the first problem may still be solvable in Θ(n3) steps. From
the perspective of particular applications this is irrelevant since we are not
forced to use inefficient computers like Turing machines. It is different in the
case of “better” models of computation. Perhaps better computers could lead
to different amounts of improvement for the two problems. If we take the
Extended Church-Turing Thesis as a basis, we can’t rule out the possibility
of computers on which the first problem would require time Θ(n2) but the
second could be solved in time Θ(n log n). At present (and presumably in the
future as well), the difference in computing time between Θ(n3) and Θ(n2) is
substantial, if we are speaking in terms of the random access machine model.
But this argument applies only to the area of design and analysis of algorithms
and has nothing to do with the algorithmic complexity of the problem. From
the point of view of complexity theory, the Extended Church-Turing Thesis
is assumed, so for a polynomial p(n), computation times t(n) and p(t(n))

26 3 Fundamental Complexity Classes

are indistinguishable. Since reading and processing at least a large portion
of the input is unavoidable (except in the case of very simple problems like
searching in a sorted array), the algorithmic complexity for cases of interest
will always be at least linear. So polynomial computation times are first of all
indistinguishable from each other and secondly the best achievable results. As
a result of the previous discussion, we maintain that

For the practical application of algorithms, the minimization of the
worst-case runtime stands in the foreground, and improvements of
polynomial, or logarithmic, or even constant factors can be significant.
In complexity theory, polynomially related runtimes are indistinguish-
able, and problems that can be solved in polynomial time are the most
efficiently solvable problems.

Definition 3.1.1. An algorithmic problem belongs to the complexity class P

of polynomially solvable problems if it can be solved by an algorithm with
polynomial worst-case runtime.

Problems in P will be considered efficiently solvable, although runtimes
like n100 do not belong to algorithms that are usable in practice. But we have
said that the Extended Church-Turing Thesis does not allow for any smaller
class of efficiently solvable problems. More interesting for us, however, is the
converse: problems that are not in P (with respect to worst-case runtime) are
not efficiently solvable. This seems reasonable, since any such algorithm has
a runtime of Ω(nk) for each constant k.

There is another property that distinguishes polynomial computation
times. When new computers are faster than old computers, the runtime for
every computation decreases by a factor of c. We can also ask how much we
can increase the length of the input, if the available computation time t re-
mains constant. If the computation time of an algorithm is nk and t = Nk,
then the new computer can perform cNk = (c1/kN)k computation steps, and
can therefore process an input of length �c1/kN, in time t. So the length
of inputs that can be processed has been increased by a constant factor of
c1/k > 1, which decreases as the degree of the polynomial increases, and for
increasing k approaches a value of 1. For computation times like n2 log n or
sums like 2n3+8n2+4 these considerations become more complicated, but for
polynomial computation times there is always a constant d > 1, dependent
upon c and the computation time, so that the length of inputs that can be
processed increases by a factor of at least d. This is not true for any superpoly-
nomial computation time, and for exponential computation times like 2εn, the
length of inputs that can be processed increases only by an additive constant
term a = ε−1 · log c, since 2ε(n+a) = c · 2εn. These observations underscore the
qualitative difference between polynomially and superpolynomially growing
computation times.

3.2 Randomized Algorithms 27

3.2 Randomized Algorithms

We are familiar with situations from everyday life where decisions are made
by chance (i.e., by means of randomization) when there are opposing inter-
ests. This is the case in sports, for example, when tournaments are drawn
(although the randomness may be restricted by seeding of the participating
players or teams), when choosing which goal is defended by which team, or
which lanes are assigned to which runners. Even in the case of mayoral elec-
tions it may be that a tie is broken by casting lots. What we routinely accept
as an everyday decision-making aid, we should not reject when solving algo-
rithmic problems. If an algorithm is to process n objects one after the other,
the chosen order has a large impact on the computation time, many of the
n! orderings are favorable, and we don’t know how to efficiently select one
of these favorable orderings, then it is useful to choose one at random. We
will discuss what properties a randomized algorithm must have in order to be
considered efficient.

We provide our computer with a source of random bits that generates one
random bit in each computation step. For every t, the first t random bits
are fully independent random variables X1, . . . , Xt with Prob(Xi = 0) =
Prob(Xi = 1) = 1/2. (For basic concepts of probability theory see Ap-
pendix A.2.) This can be realized by independent coin tosses, but this is not
efficient. Modern computers provide pseudo-random bits which do not com-
pletely satisfy the required conditions. We will not pursue this topic further
(for this see Goldreich (1998)) but will assume an ideal source of randomness.
At the ith step, a randomized algorithm can read the ith random bit, and its
action may depend on this random bit. Formally, we will describe a random-
ized Turing machine. The deterministic program δ will be replaced by a pair
of programs (δ0, δ1). At the ith computation step program δXi

is used. The
course of the computation is therefore directed by the input and the random
bits.

If random algorithms with modest worst-case computation times always
yield the correct result, then we can simply simulate them by deterministic
algorithms that ignore the random bits. From a formal perspective, the deter-
ministic algorithm can simulate the randomized algorithm for the case that
Xi = 0 for all i. So we only gain something if we give up either the demand for
a modest worst-case computation time or the demand that the result always
be correct.

For every input x the computation time tA(x) of a randomized algorithm A
is a random variable, and we can be satisfied if the worst-case (over all inputs
up to a certain length) expected (averaged over the random bits) runtime

sup{E(tA(x)) : |x| ≤ n}

is small. Consider our earlier example, in which there were a few bad orderings
and many good orderings in which the objects could be considered. A specific
example of this type could be a variant of QuickSort in which the pivot element

28 3 Fundamental Complexity Classes

is chosen at random. Our critique in Section 2.4 regarding the use of average-
case computation time does not apply here. There the expected value was
taken with respect to a probability distribution on the inputs of length n,
which is unknown in practice. Here the expected value is taken with respect
to the random bits, the quality of which we can control.

Purists could complain that in our example of QuickSort, random bits
only allow for the random choice from among n objects when n is a power of
two (n = 2k). But this is not a problem. We can work in phases during which
we read �log n� random bits. These �log n� random bits can be interpreted as
a random number z ∈ {0, . . . , 2�log n� − 1}. If 0 ≤ z ≤ n − 1, then we select
object z + 1, otherwise we continue to the next phase. Since each phase is
successful with probability greater than 1/2, Theorem A.2.12 implies that on
average we will need fewer than two phases, and so the average computation
time increases by at most a factor of 2 compared to the case where we could
actually select a random z ∈ {1, . . . , n}.

Definition 3.2.1. We will let EP (expected polynomial time) denote the class
of algorithmic problems for which there is an algorithm with polynomial worst-
case expected runtime.

Such algorithms are called Las Vegas algorithms.
We can generalize the QuickSort example in order to clarify the options of

Las Vegas algorithms. If the maximal computation time is bounded for all in-
puts of length n and all random choices, we obtain finitely many deterministic
algorithms by considering all possible ways of replacing the random bits with
constants. How can the Las Vegas algorithms be better than each of these
deterministic algorithms? Each deterministic algorithm could be efficient for
many inputs, but inefficient for a few inputs, and in such a way that for each
input significantly more algorithms are efficient than inefficient. This would
lead to a good expected runtime for each input, but to an unacceptably high
worst case runtime for each input because we do not know how to decide
efficiently which randomly directed choice will help us out of our dilemma.

Now we consider two models where the correct result is not always com-
puted, but where the worst-case runtime (taken over all inputs up to a certain
length and all realizations of the random bits) is polynomially bounded. In
the first model, algorithms are not allowed to produce incorrect results, but
they are allowed to fail and end the computation with the output “I don’t
know” (or more briefly “?”).

Definition 3.2.2. We denote with ZPP(ε(n)) (zero-error probabilistic poly-
nomial) the class of algorithmic problems for which there is a randomized
algorithm with polynomially bounded worst-case runtime that, for every input
of length n, has a failure-probability bounded by ε(n) < 1. Such an algorithm
either provides a correct result or fails by producing the output “?”.

In the second model, the algorithm may even provide incorrect results.
Such an algorithm is called a Monte Carlo algorithm.

3.2 Randomized Algorithms 29

Definition 3.2.3. We let BPP(ε(n)) denote the class of algorithmic problems
for which there is a randomized algorithm with polynomially bounded worst-
case runtime that for every input of length n has an error-probability of at
most ε(n) < 1/2. In the case of error, the algorithm may output any result
whatsoever.

The side condition that ε(n) < 1/2 is there to rule out senseless algorithms.
Every decision problem, for example, has an algorithm with error-probability
1/2: the algorithm merely accepts with probability 1/2 and rejects with prob-
ability 1/2 without even reading its input. (For those readers already familiar
with the classes ZPP and BPP, we point out that we will shortly identify these
familiar complexity classes with special cases of ZPP(ε(n)) and BPP(ε(n)),
respectively.)

In the important special case of decision problems, there are two types
of error. Inputs can be incorrectly accepted or incorrectly rejected. For some
problems, like verification problems, the two types of error are not equally
serious. Accepting a bad processor as correct has very different consequences
from classifying a good processor as faulty. If we take the word ‘verification’
seriously, then the first type of error must not be allowed.

Definition 3.2.4. We will denote by RP(ε(n)) (random polynomial time) the
class of decision problems for which there is an algorithm with polynomially
bounded worst-case computation time and the following acceptance behavior:
Every input that should be rejected, is rejected; and for every input of length
n that should be accepted, the probability of erroneously rejecting the input is
bounded by ε(n) < 1.

This type of error is known as one-sided error, in contrast to the two-sided er-
ror that is allowed in BPP(ε(n)) algorithms. Of course, in the case of one-sided
error we could reverse the roles of inputs that are to be accepted with those
that are to be rejected. From the point of view of languages, which correspond
to decision problems (see Section 2.1), we are moving from the language L to
its complement, denoted by L or co-L. So we denote by co-RP(ε(n)) the class
of languages L for which L ∈ RP(ε(n)). In more detail, this is the class of de-
cision problems that have randomized algorithms with polynomially bounded
worst-case runtime that accept every input that should be accepted, and for
inputs of length n that should be rejected, have an error-probability bounded
by ε(n) < 1.

Of course, we can only use algorithms that fail or make errors when the
failure- or error-probability is small enough. For time critical applications, we
may also require that the worst-case runtime is small.

Randomized algorithms represent an alternative when it is sufficient
to bound the average computation time, or when certain failure- or
error-rates are tolerable.

This means that for most applications, randomized algorithms represent
a sensible alternative. Failure- or error-probabilities of, for example, 2−100

30 3 Fundamental Complexity Classes

lie well below the rate of computer breakdown or error. Exponentially small
error-probabilities like ε(n) = 2−n are, for large n, even better. If any failure
or error is acceptable at all, then we should certainly consider a failure- or
error-probability of min{2−100, 2−n} to be tolerable.

Although randomized algorithms present no formal difficulties, there are
frequently problems with the interpretation of results of randomized algo-
rithms. We will discuss this in the context of the primality test of Solovay and
Strassen (1977), which is a co-RP(2−100) algorithm. It is very efficient and has
the following behavior: If the input n is a prime, it is accepted. If the input n
is not a prime number, it is still accepted with a probability of at most 2−100,
otherwise it is rejected. So if the algorithm rejects an input n, then n is not
a prime, since all primes are accepted. If, on the other hand, the algorithm
accepts n, then the conclusion is ambiguous. The number n might be a prime
or it might not. In the second case, however, this would have been detected
with a probability bordering on 100 %, more precisely with probability at
least 1 − 2−100. Since we need random prime numbers with many bits for
cryptography, random numbers with the desired number of bits are checked
with the primality test. Numbers that pass this test are “probably” prime.
This language at first led to a rejection of the work of Solovay and Strassen.
The referee correctly noted that every number either is or isn’t a prime and
never is prime “with a certain probability”. But this objection does not go to
the heart of the primality test. The term “probably” is not to be interpreted
as the probability that n is a prime number. Rather, we have performed a test
which prime numbers always pass but which composites fail with a probabil-
ity of at least 1 − 2−100. So when we apply the primality test, on average at
most every 2100th test of a number that is not prime leads to acceptance of
the number as a prime.

3.3 The Fundamental Complexity Classes for

Algorithmic Problems

We now want to bring some order to the complexity classes P, EP, ZPP(ε(n)),
BPP(ε(n)), RP(ε(n)), and co-RP(ε(n)), which we introduced in Sections 3.1
and 3.2. In particular, we are facing the difficulty that, due to the free choice
of ε(n), we have a multitude of different complexity classes to deal with. If
one person is satisfied with an error-rate of 1/100 but another insists on a
bound of 1/1000, then we want to know if they obtain two different classes of
efficiently solvable problems. We will show that all error-probabilities that are
not absurdly large give rise to the same complexity classes. But first we will
show that it doesn’t matter if we demand correct results with polynomially
bounded worst-case expected runtime or polynomially bounded worst-case
runtime with small probability of failure.

3.3 The Fundamental Complexity Classes for Algorithmic Problems 31

Theorem 3.3.1. EP = ZPP(1/2).

Proof. EP ⊆ ZPP(1/2): If a problem belongs to EP, then there is a randomized
algorithm that correctly solves this problem and for every input of length n
has an expected runtime that is bounded by a polynomial p(n). The Markov
Inequality (Theorem A.2.9) says that the probability of a runtime bounded
by 2 · p(n) is at least 1/2. So we will stop the algorithm if it has not halted on
its own after 2 · p(n) steps. If the algorithm stops on its own (which it does
with probability at least 1/2), then it computes a correct result. If we stop
the algorithm because it takes too long, we will interpret this as a failure and
output “?”. By definition, this modified algorithm is a ZPP(1/2) algorithm.

ZPP(1/2) ⊆ EP: If a problem belongs to ZPP(1/2), then there is a random-
ized algorithm with worst-case runtime bounded by a polynomial p(n) that
never gives false results and provides the correct result with probability at
least 1/2. We can repeat this algorithm independently as often as necessary
until it produces a result, which will then necessarily be correct. By Theo-
rem A.2.12 the expected number of repetitions is bounded by 2. In this way
we obtain a modified algorithm that always provides correct results and has
a worst-case expected runtime bounded by 2 · p(n). This is an EP algorithm.

��

On the basis of this theorem we will only consider worst-case runtime and
various types of error-probabilities. The notation EP is unusual, and we have
only used it temporarily. In the future we will consider only the ZPP-classes
instead.

A ZPP(1/2) algorithm is like a coin toss in which we lose with probability
at most 1/2. If we repeat the coin toss several times, we will hardly ever lose
every toss. For ZPP algorithms, one successful run without failure is sufficient
to know the correct result (with certainty). This observation can be gener-
alized to drastically reduce the failure-rate. This is referred to as probability
amplification.

Theorem 3.3.2. Let p(n) and q(n) be polynomials, then

ZPP(1 − 1/p(n)) = ZPP(2−q(n)).

Proof. We will repeat an algorithm with failure-rate of 1 − 1/p(n) a total of
t(n) times, whereby the individual runs are fully independent, i.e., each new
run uses new random bits. If all of the runs fail, then our new algorithm fails.
Otherwise, every run that does not fail outputs a correct result, which we can
recognize because it differs from “?”. The new algorithm can output any one
of these correct results. The failure-rate of the new algorithm is

(1 − 1/p(n))t(n) .

We let t(n) := �(ln 2)·p(n)·q(n)�. Then t(n) is a polynomial, so the runtime of
the new algorithm is polynomially bounded. Furthermore, since (1 − 1

m)m ≤

32 3 Fundamental Complexity Classes

e−1, we have

(1 − 1/p(n))(ln 2)·p(n)·q(n) ≤ e−(ln 2)·q(n) = 2−q(n) . ��

To reduce the failure-probability from 1− 1/n to 2−n, fewer than n2 repe-
titions of the algorithm are required. Smaller failure-probabilities than 2−q(n)

are impossible with polynomially bounded runtimes. If the computation time
is bounded by a polynomial t(n), then there are at most t(n) random bits,
and so at most 2t(n) different random sequences. Thus, if the algorithm fails
at all, it must fail with probability at least 2−t(n). Because they only allow
polynomially bounded computation time, the ZPP(ε(n))-classes for all ε(n)
that do not approach 1 sufficiently quickly and are not equivalent to ε(n) = 0
collapse to the same class. Thus we obtain the following complexity classes.

Definition 3.3.3. An algorithmic problem belongs to the complexity class ZPP

if it belongs to ZPP(1/2), that is, if there is an algorithm with polynomially
bounded worst-case runtime that never produces incorrect results and for every
input has a failure-probability bounded by 1/2. An algorithmic problem belongs
to ZPP∗ if it belongs to ZPP(ε(n)) for some function ε(n) < 1.

ZPP algorithms are of practical significance, since the failure-probability
can be made exponentially small. On the other hand, ZPP∗ algorithms that
are not ZPP algorithms have no direct practical significance. Nevertheless, we
will encounter the complexity class ZPP∗ again later and give it another name.

Our considerations in the proof of Theorem 3.3.2 can be extended to RP

algorithms. If we repeat an RP(ε(n)) algorithm t(n) times, every input that
should be rejected will be rejected in each repetition. On the other hand,
for inputs that should be accepted, the probability of being rejected in every
repetition is bounded by ε(n)t(n). So we will make our decision as follows: If
at least one repetition of the RP algorithm accepts, then we will accept; if all
repetitions reject, then we will reject. Then the proof of Theorem 3.3.2 leads
to the following result.

Theorem 3.3.4. Let p(n) and q(n) be polynomials, then

RP(1 − 1/p(n)) = RP(2−q(n)). ��

The number of repetitions required is exactly the same as it was for the
ZPP algorithms.

Definition 3.3.5. A decision problem belongs to the complexity class RP if it
belongs to the class RP(1/2), that is, if there is a randomized algorithm with
polynomially bounded worst-case runtime that rejects every input that should
be rejected with probability 1 and has an error-probability bounded by 1/2 for
inputs that should be accepted. A decision problem belongs to RP∗ if it belongs
to RP(ε(n)) for some function ε(n) < 1.

3.3 The Fundamental Complexity Classes for Algorithmic Problems 33

Once again, RP algorithms and co-RP algorithms – like the primality test
we discussed previously – are of practical significance, and the complexity
class RP∗ will prove to be central for complexity theory and will later receive
a different name.

The idea of reducing the error-probability by means of independent repe-
titions is not so easily extended to BPP(ε(n)) algorithms, since we can never
be sure that a result is correct. If we consider an input x of length n then we
get a correct result with probability of s := s(x) ≥ 1 − ε(n) > 1/2. For t(n)
independent runs, we expect a correct result in s · t(n) > t(n)/2 of the tries.
In general, for a search problem we could obtain t(n) different results and
have no idea which result we should choose. For problems that have a single
correct result the situation is better. We can take a majority vote, that is, we
can choose the result that appears most often among the t(n) repetitions of
the algorithm. This majority decision is only wrong if fewer than t(n)/2 of
the repetitions deliver the correct result. We can analyze this situation using
the Chernoff Inequality (Theorem A.2.11). Let Xi = 1 if the ith repetition
delivers the correct result, otherwise let Xi = 0. Then Prob(Xi = 1) = s, the
random variables X1, . . . , Xt(n) are fully independent, and E(X) = s · t(n) for
X = X1 + · · · + Xt(n).

So

Prob(X ≤ t(n)/2) = Prob(X ≤ (1 − (1 − 1/(2s))) · E(X)) .

When applying the Chernoff Inequality, δ = 1 − 1/(2s) and

Prob(X ≤ t(n)/2) ≤ e−t(n)·s·δ2/2.

Since s ≥ 1 − ε(n), this bound is largest when s = 1 − ε(n).
For t(n) := �(2 · ln 2) · q(n) · p(n)2�, i.e., a polynomial, we obtain an error-

probability that is bounded by 2−q(n). For most optimization problems we
can determine in (deterministic) polynomial time if two results have the same
quality. Since the value of the optimal solution is unique, we can in this case
reduce the error-probability in an analogous manner.

Theorem 3.3.6. Let p(n) and q(n) be polynomials. If we restrict our atten-
tion to the class of problems with a unique solution or to optimization problems
for which the value of a solution can be computed in polynomial time, then

BPP(1/2 − 1/p(n)) = BPP(2−q(n)) . ��

Theorem 3.3.6 covers the cases that are most interesting to us. Therefore,
the following definitions are justified.

Definition 3.3.7. An algorithmic problem belongs to the complexity class BPP

if it belongs to BPP(1/3), that is, if there is a randomized algorithm with
polynomially bounded worst-case runtime such that the error-probability for
each input is bounded by 1/3. An algorithmic problem belongs to PP if it
belongs to BPP(ε(n)) for some function ε(n) < 1/2.

34 3 Fundamental Complexity Classes

The designation “bounded-error” refers to the fact that the error-prob-
ability has at least some constant distance from 1/2. The class BPP(1/2) is
just as senseless as the class ZPP(1), since it contains all decision problems,
even non-computable ones.

We repeat the definitions of our complexity classes P, ZPP, ZPP∗, RP,
RP∗, co-RP, co-RP∗, BPP, and PP informally. All of these classes assume a
polynomially bounded worst-case runtime for their respective (randomized)
algorithms. For the class P, the result of the algorithm must always be correct,
so we have no need for random bits. For the classes ZPP and ZPP∗ errors are
forbidden, but the algorithms may fail to give an answer. On the other hand,
for the classes RP, RP∗, co-RP, and co-RP∗ a one-sided error is allowed – for
RP and RP∗ only if x ∈ L, and for co-RP and co-RP∗ only if x �∈ L. Finally,
for BPP and PP there may be an error on any input. ZPP, RP, co-RP, and BPP

are complexity classes with bounded failure- or error-probabilities, while the
classes ZPP∗, RP∗, co-RP∗, and PP are complexity classes without reasonable
bounds on the failure- or error-probabilities.

Algorithms with bounded failure- or error-probability lead to algorithms
that are reasonably applicable in practice. Thus the complexity classes
P, ZPP, RP, co-RP, and BPP contain problems that, under different
demands, can be considered efficiently solvable.

We obtain the following “complexity landscape” for algorithmic problems,
where the directed arrows represent subset relationships.

Theorem 3.3.8.

BPP PP

ZPP∗ZPP

P

Proof. The relationships P ⊆ ZPP, ZPP ⊆ ZPP∗, and BPP ⊆ PP follow directly
from the definitions of these classes.

By Theorem 3.3.2,

ZPP = ZPP(1/2) = ZPP(1/3) ⊆ BPP(1/3) = BPP ,

since “?” in a BPP algorithm is an error. ��

3.4 The Fundamental Complexity Classes for Decision Problems 35

One would like to show the corresponding relationship ZPP∗ ⊆ PP, but this
is presumably not true. A ZPP algorithm with failure-probability 1 − 2−2n,
even if repeated independently 2n times would still with high probability
return “?” every time. We cannot return a correct result with an error-rate
less than 1/2.

When there are many possible results, “guessing the result” does not help.
This suggests special consideration of complexity classes for decision problems.
We have already seen (in Section 2.1) that optimization problems and evalua-
tion problems have obvious variants that are decision problems. In Chapter 4
we will see that these decision problems are complexity theoretically very sim-
ilar to their underlying optimization and evaluation problems. Therefore, we
will focus on decision problems in the next section.

3.4 The Fundamental Complexity Classes for Decision

Problems

The complexity classes P, ZPP, ZPP∗, BPP, and PP were defined for algorithmic
problems. Since one-sided error only makes sense for decision problems, RP

and RP∗ were only defined for decision problems. If we focus on the class of
decision problems DEC, then we have to consider the class P∩DEC instead of
P, and analogously for ZPP, ZPP∗, BPP, and PP. Of course, P∩DEC ⊆ RP, but
P �⊆ RP, since the former contains problems that are not decision problems.
But to the confusion of all who are introduced to complexity theory, P, ZPP,
ZPP∗, BPP, and PP are used ambiguously to represent either the more general
classes or the classes restricted to decision problems. The hope is that from
context it will be clear if the class is restricted to decision problems. To avoid
using unusual notation, we will also use the ambiguous notation and do our
best to clarify any possible confusion. In this section in any case, we will
always restrict our attention to decision problems.

Associated to every decision problem, i.e., to every language, is its comple-
ment, which we will denote as L or co-L. For complexity classes C, we let co-C
denote the class of all languages co-L such that L ∈ C. Since only classes with
one-sided error have asymmetric acceptance criteria, we have the following:

Remark 3.4.1. The complexity classes P, ZPP, ZPP∗, BPP, and PP are closed
under complement. That is, P = co-P, ZPP = co-ZPP, ZPP∗ = co-ZPP∗, BPP =
co-BPP, and PP = co-PP.

For decision problems there is a more complete complexity landscape than
for all algorithmic problems.

36 3 Fundamental Complexity Classes

Theorem 3.4.2.

BPP

P

co-RPRP

PP

ZPP ZPP∗

RP∗ co-RP∗

Proof. The inclusion P ⊆ ZPP and the “horizontal inclusions” between classes
of practially efficiently solvable problems (bounded error) and the correspond-
ing classes that do not give rise to practically useful algorithms, namely
ZPP ⊆ ZPP∗, RP ⊆ RP∗, co-RP ⊆ co-RP∗, and BPP ⊆ PP, follow directly
from the definitions.

ZPP ⊆ RP, and ZPP∗ ⊆ RP∗, since the answer “?” for a failure can be
replaced by a rejection, possibly with error. Analogously, co-ZPP ⊆ co-RP,
and since ZPP = co-ZPP, ZPP ⊆ co-RP as well. Similarly, ZPP∗ ⊆ co-RP∗.

By Theorem 3.3.4,

RP = RP(1/2) = RP(1/3) ⊆ BPP(1/3) = BPP .

This is not surprising, since one-sided error is a stronger condition than two-
sided error. Analogously, we have co-RP ⊆ co-BPP = BPP.

It remains to be shown that the inclusion RP∗ ⊆ PP holds, since co-RP∗ ⊆
co-PP = PP follows from this. For a decision problem L ∈ RP∗ we investigate
an RP∗ algorithm A and consider its worst-case runtime p(n), a polynomial
in the input length n. On an input of length n, the algorithm only has p(n)
random bits available. For each of the 2p(n) assignments of the random bits the
algorithm works deterministically. Thus we obtain a 0-1 vector A(x) of length
2p(n) that describes for each assignment of the random bits the decision of
the algorithm (1 = accept; 0 = reject). For the RP algorithm A the following
hold:

• For x ∈ L, A(x) contains at least one 1.
• For x �∈ L, A(x) contains only 0’s.

We are looking for a PP algorithm A′ for L, that is, for an algorithm with
the following properties:

• For x ∈ L, A′(x) contains more 1’s than 0’s.
• For x �∈ L, A′(x) contains more 0’s than 1’s.

3.4 The Fundamental Complexity Classes for Decision Problems 37

The idea is to accept each input with a suitable probability and otherwise
to apply algorithm A. By doing this the acceptance probability is “shifted to
the right” – from 0 or at least 2−p(n) to something less than 1/2 or something
greater than 1/2, respectively. This “shifting of acceptance probability” can
be realized as follows: Algorithm A′ uses 2p(n) + 1 random bits. The first
p(n) + 1 random bits are interpreted as a binary number z.

• If 0 ≤ z ≤ 2p(n) (that is, in 2p(n)+1 of the 2p(n)+1 cases), then we simulate
A using the remaining p(n) random bits.

• If 2p(n) < z ≤ 2p(n)+1 − 1 (that is, in the other 2p(n) − 1 cases) the input
is accepted without any further computation. Note that this happens for
(2p(n)−1) ·2p(n) of the 22p(n)+1 total assignments of the 2p(n)+1 random
bits.

The analysis of the algorithm A′ is now simple.

• If x �∈ L, then A never accepts. So A′(x) contains only

(2p(n) − 1) · 2p(n) = 22p(n) − 2p(n) < 22p(n)+1/2

1’s, and therefore more 0’s than 1’s.
• If x ∈ L, then A′(x) contains at most

(2p(n) + 1) · (2p(n) − 1) = 22p(n) − 1 < 22p(n)+1/2

0’s, and therefore more 1’s than 0’s. ��

The proof of the inclusion RP∗ ⊆ PP only appears technical. We have an
experiment that dependent on a property (namely, x �∈ L or x ∈ L) with prob-
ability ε0 < 1/2 or ε1 > ε0, respectively, produces an outcome E (accepting
input x). If we decide with probability p < 1, to produce the outcome E in
any case, and with probability 1 − p to perform the experiment, then by the
Law of Total Probability (Theorem A.2.2) we have new probabilities

ε′0 = p + (1 − p)ε0 = ε0 + p(1 − ε0)

and
ε′1 = p + (1 − p)ε1 = ε1 + p(1 − ε1) > ε0 + p(1 − ε0)

for the outcome E. Now it only remains to choose p so that

ε0 + p(1 − ε0) < 1/2 < ε1 + p(1 − ε1) .

Our work is only slightly more difficult because in addition we must see to
it that p is of the form t/2q(n) for some polynomial q(n) so that the new
experiment can be realized in polynomial time.

To derive a relationship between ZPP, RP, and co-RP, we can imagine the
associated algorithms as investment advisers. The ZPP adviser gives advice in
at least half of the cases, and this advice is always correct, but the rest of the

38 3 Fundamental Complexity Classes

time he merely shrugs his shoulders. The RP adviser is very cautious. When
the prospects for an investment are poor, she advises against the investment,
and when the prospects are good, she only recommends the investment half of
the time. If she advises against an investment, we can’t be sure if she is doing
this because she knows the prospects are poor or because she is cautious. With
the ZPP adviser, on the other hand, we always know whether he has given
good advice or is being cautious. With the co-RP adviser the situation is like
that with the RP adviser, only the tendencies are reversed. His advice is risky.
We won’t miss any good investments, but we are only warned about poor
investments at least half of the time. If we have both a conservative adviser
and an aggressive adviser, that is, both an RP and a co-RP adviser, we should
be able to avoid mistakes. This is formalized in the following theorem.

Theorem 3.4.3. ZPP = RP∩ co-RP and ZPP∗ = RP∗ ∩ co-RP∗.

Proof. We will only prove the first equality. The proof is, however, correct
for all bounds ε(n), and so the second equality follows as well. The inclusion
ZPP ⊆ RP∩ co-RP follows from Theorem 3.4.2, so we only need to show that
RP∩ co-RP ⊆ ZPP.

If L ∈ RP∩ co-RP, then there are polynomially bounded RP algorithms A
and A for L and L, respectively. We run both algorithms, one after the other,
which clearly leads to a polynomially bounded randomized algorithm. Before
we describe how we will make our decision about whether x ∈ L, we will
investigate the behavior of the algorithm pair (A,A).

• Suppose x ∈ L. Then since x /∈ L, A rejects the input, which we will
denote by A(x) = 0. Since x ∈ L, A accepts x with probability at least
1/2, which we denote with A(x) = 1|0. So

(
A,A

)
is (1|0, 0).

• Suppose x /∈ L. Analogously,
(
A,A

)
is (0, 1|0).

The combined algorithm (A,A) has three possible results (since (1, 1) is
impossible). These results are evaluated as follows:

• (1, 0): Since A(x) = 1, x must be in L. (If x /∈ L, then A(x) = 0.) So we
accept x.

• (0, 1): Since A(x) = 1, x must be in L. (If x ∈ L, then A(x) = 0.) So we
reject x.

• (0, 0): One of the algorithms has clearly made an error, but we don’t know
which one, so we output “?”.

The new algorithm is error-free. If x ∈ L, then A(x) = 0 with certainty,
and A(x) = 1 with probability at least 1/2, so the new algorithm accepts x
with probability at least 1/2. If x /∈ L, then it follows in an analogous way
that the new algorithm rejects with probability at least 1/2. All together, this
implies that the new algorithm is a ZPP algorithm for L. ��

3.5 Nondeterminism as a Special Case of Randomization 39

3.5 Nondeterminism as a Special Case of Randomization

Now that we have introduced important complexity classes using randomiza-
tion (which we consider as a key concept), we want to establish the connection
to the classical use of nondeterminism. Once again in this section we will only
consider decision problems.

With deterministic algorithms, the effects of the next computation step
only depend on the information currently being read and the program instruc-
tion about to be executed. A randomized algorithm can at every step choose
between two actions based on the random bit available for that step, whereby
each action is performed with probability 1/2. A nondeterministic algorithm
can also choose at each step between two possible actions, but there are no
rules about how the choice between the two actions is to be made. Formally, a
nondeterministic Turing machine, just like a randomized Turing machine, has
a pair of programs (δ0, δ1) available to it. This is more typically, but equiv-

alently, described as a single function δ : Q × Γ → (Q × Γ × {−1, 0,+1})2,
which contains both possible actions. An input is accepted if and only if there
is a legal computation path, i.e., a sequence of actions that agree with the
program, that leads to acceptance of the input.

Definition 3.5.1. A decision problem L belongs to the complexity class NP

(nondeterministic polynomial time) if there is a nondeterministic algorithm
with polynomially bounded worst-case runtime that accepts every x ∈ L along
at least one legal computation path, and rejects every x /∈ L along every legal
computation path.

This is the complexity class that was discussed in Chapter 1 in the con-
text of the NP �= P-hypothesis. It is admittedly difficult to imagine the way
a nondeterministic machine works. The following explanations are frequently
used:

• Algorithmically, all computation paths are tried out. If the maximal run-
time is p(n), this can be as many as 2p(n) computation paths.

• The algorithm has the ability to “guess” the correct computation steps.

So we are dealing either with an exponentially long computation or with an
unrealizable concept. Thus nondeterministic computers are considered to be a
theoretically important but practically unrealizable concept. Randomization
provides simpler access to the class NP.

Theorem 3.5.2. NP = RP∗.

Proof. The definitions of NP and RP∗ expect algorithms with polynomially
bounded worst-case computation time p(n) and two possible actions in each
situation. For x /∈ L, an NP algorithm must reject along every computation
path, and for an RP∗ algorithm this must happen with probability 1. Since
every computation path has a probability of at least 2−p(n), the two require-
ments are equivalent. For x ∈ L, an NP algorithm must accept x along at least

40 3 Fundamental Complexity Classes

one computation path, and an RP∗ algorithm must reject with a probability
less than 1. Once again, these two statements are equivalent. ��

An RP∗ algorithm, and therefore an NP algorithm, can be performed on a
randomized computer with polynomially bounded computation time, and is
therefore a realizable algorithmic concept. It just isn’t practically useful due
to the potentially large error-probability.

Nondeterminism is the same thing as randomization where one-sided
errors and any error-probability less than 1 are allowed.

Now we can insert the results of Theorem 3.4.3 into Theorem 3.4.2 and
reformulate Theorem 3.4.2 with the usual notation.

Theorem 3.5.3.

BPP

P

co-RPRP

PP

NP co-NP

NP∩ co-NPZPP = RP∩ co-RP

error
two-sided

one-sided
error

failure-probability
bounded error or unbounded error or

failure-probability

zero error
but failure

no error
no failure

��

The rows and columns in the figure above reflect the characterization from
the modern perspective with the focus on randomization. The terminology of
the complexity classes arose historically, and are rather unfortunately chosen.
For example, BPP (B = bounded) is not the only class for which the differ-
ence between the trivial error-probability and the tolerated error-probability
is bounded by a constant; the same is true for RP algorithms and for the
failure-probability of ZPP algorithms. In ZPP and BPP, the second P stands
for probabilistic, and in RP, the R stands for random, although randomization
is involved in all these classes. The classes PP and NP deal with randomized
algorithms with unacceptable error-probabilities, but only PP indicates this
in its name. Finally, the class NP∩ co-NP, in contrast to ZPP = RP∩ co-RP,
has no real name of its own.

When the complexity class NP was “discovered” (in the 1960’s), random-
ized algorithms were exotic outsiders, while formal languages had been highly
developed as the basis for programming languages. A word belongs to the

3.5 Nondeterminism as a Special Case of Randomization 41

language generated by a grammar if there is a derivation of the word from the
start symbol following the rules of the grammar. In this context, nondeter-
minism is more natural than randomization. Typically, we are not interested
in the probability that a word is generated when randomly choosing an ap-
propriate derivation rule for a left derivation from a context free grammar.
With algorithms, on the other hand, the probability that a correct result is
computed is important.

4

Reductions – Algorithmic Relationships

Between Problems

4.1 When Are Two Problems Algorithmically Similar?

In complexity theory we want to classify problems with respect to their com-
plexity. That is, we are satisfied to know which of the complexity classes
introduced in Chapter 3 contain the problem we are considering and which
do not. Later we will introduce additional complexity classes, and then we
will extend our inquiry to include these classes as well. Two problems will be
called complexity theoretically similar if they belong to exactly the same sub-
set of the complexity classes being considered. We know many problems that
are solvable in polynomial time, and therefore are complexity theoretically
similar. Similarly, there are many problems that are not computable, that is
that they cannot be solved with the help of computers. Still other problems
are known to be computable but so difficult that they do not belong to any
of the complexity classes we will consider. These problems are also similar in
the sense just described. (Of course, it makes sense to distinguish between
computable and noncomputable problems.) At the moment, we are not able
to prove that a problem is in PP but not in P. This is because of our inability
(mentioned already in Chapter 1) to show that problems cannot be solved in
polynomial time, unless they are very difficult.

Fortunately, we are still able to show that many problems are complexity
theoretically similar, i.e., that they belong to exactly the same complexity
classes. The path to this at first surprising result consists of showing that
the problems are actually algorithmically similar. If we can obtain from a
polynomial time algorithm for one problem a polynomial time algorithm for
another, and vice versa, then we know that either both problems belong to P

or neither of them does.
We want to precisely define what it means for a problem A to be algorith-

mically no more difficult to solve than some problem B. Problems A and B
are then algorithmically similar when A is algorithmically no more difficult
than B and B is algorithmically no more difficult than A. The definition of
“algorithmically no more difficult than” follows directly from our goals.

44 4 Reductions – Algorithmic Relationships Between Problems

Definition 4.1.1. Problem A is algorithmically no more difficult than prob-
lem B if there is an algorithm that solves problem A that may make use of an
algorithm for B and has the following properties:

• The runtime of the algorithm for A, not counting the calls to the algorithm
that solves B, is bounded by a polynomial p(n).

• The number of calls to the algorithm that solves B is bounded by a poly-
nomial q(n).

• The length of each input to a call of the algorithm solving B is bounded by
a polynomial r(n).

If there is an algorithm that solves B with runtime tB(n), then we obtain
an algorithm for A with a runtime that can be estimated as follows:

tA(n) ≤ p(n) + q(n) · tB (r(n)) .

This estimate can be improved if we know that some of the calls to the al-
gorithm for B are shorter. If tB(n) is polynomially bounded, then tA(n) is
also polynomially bounded, and we can easily compute a polynomial bound
for tA(n). Here we use the following three simple but central properties of
polynomials p1 of degree d1 and p2 of degree d2:

• The sum p1 + p2 is a polynomial of degree at most max{d1, d2}.
• The product p1 · p2 is a polynomial of degree d1 + d2.
• The composition p1 ◦ p2 (i.e., p1(p2(n))) is a polynomial of degree d1 · d2.

What is interesting for us is the contrapositive of the statement above:
If A does not belong to P, then B does not belong to P either. That is,
from a lower bound sA(n) on the complexity of A, we are able to compute a
lower bound sB(n) for the complexity of B. For the sake of simplicity, we will
assume that the polynomials p, q, and r are monotonically increasing and let
r−1(n) := min{m | r(m) ≥ n}. Then

sA(n) ≤ p(n) + q(n) · sB (r(n)) ,

sA

(
r−1(n)

)
≤ p
(
r−1(n)

)
+ q
(
r−1(n)

)
· sB(n)

and

sB(n) ≥
sA

(
r−1(n)

)
− p
(
r−1(n)

)
q (r−1(n))

.

For the purposes of complexity theoretic classification it is sufficient if p,
q, and r are polynomials. In fact, the bounds are better if the polynomials
p, q, and r are “as small as possible”. This concept can also be applied for
randomized algorithms for B with bounded failure- or error-probability. Using
independent repetitions the failure-rate of the algorithm for B can be reduced
so that the total failure-rate when there are q(n) calls is small enough.

In complexity theory the clearly understood term “algorithmically no more
difficult than” is not actually used. Based on similar concepts from decidability

4.1 When Are Two Problems Algorithmically Similar? 45

theory and logic, we speak instead of reductions: We have reduced the problem
of finding an efficient algorithm for A to the problem of finding an efficient
algorithm for B. Since efficiency is in terms of polynomial time, and according
to the Extended Church-Turing Thesis we may choose Turing machines as our
model of computation, the statement “A is algorithmically no more difficult
that B” is abbreviated A ≤T B, and read “A is (polynomial time) Turing
reducible to B”. The notation ≤T indicates that the complexity of A is not
greater than that of B. Now A and B are algorithmically similar if A ≤T B
and B ≤T A. We will write this as A ≡T B, and say that A and B are
(polynomial time) Turing equivalent. 1

Turing reductions are algorithmic concepts where, just like in top-down
programming, we work with subprograms that have not yet been implemented.
Of course in this case we do not always have the hope that we will be able
to implement an efficient algorithm for B. Therefore, an algorithm for A that
results from a Turing reduction to B is often called an algorithm with oracle
B. We ask an oracle that – in contrast to the Oracle of Delphi – reliably
provides answers for instances of problem B.

By means of Turing reductions we can establish algorithmic similari-
ties between problems of unknown complexity.

Before we get to specific Turing reductions, we want to establish a few
extremely useful properties of this reducibility concept. Turing reducibility is
trivially reflexive: A ≤T A for all problems A since we can solve instances of
A by asking an oracle for A. Furthermore, ≤T is transitive:

A ≤T B and B ≤T C ⇒A ≤T C.

The proof of this property is simple. We use the Turing reduction from A to
B and substitute for each call to the oracle for B the given Turing reduction
from B to C. Since every polynomial is bounded by a monotonically increasing
polynomial, we will assume that the polynomials p1, q1, and r1 in the definition
of A ≤T B and the polynomials p2, q2, and r2 in the definition of B ≤T C
are monotonically increasing. The runtime of our C-oracle algorithm for A,
excluding the calls to C, is bounded by p3(n) := p1(n)+ q1(n) · p2 (r1(n)); the
oracle for C will be queried at most q3(n) := q1(n) · q2 (r1(n)) times for inputs
of length at most r3(n) := r2 (r1(n)); and p3, q3, and r3 are polynomials.
Turing equivalence is an equivalence relation since A ≡T A and

A ≡T B ⇔B ≡T A ,

and transitivity follows directly from the transitivity of ≤T.

1When more general Turing reductions are considered, the notation ≤p
T is some-

times used for polynomially bounded Turing reductions to distinguish them from
general Turing reductions. Since in this book all reductions will be polynomially
bounded, we will omit the superscript.

46 4 Reductions – Algorithmic Relationships Between Problems

Now we want to investigate the algorithmic similarity of problems in a few
example cases. In Section 4.2 we will show that for the problems that are of
interest to us, all variants of a problem are complexity theoretically equivalent.
In Section 4.3 we will establish relationships between problems that appear
to be very similar, or at least turn out to be very similar. The true power
of Turing reducibility will be shown in Section 4.4 where we will be able to
establish relationships between “very different” problems. In this section we
will see that many of our Turing reductions are of a special type, and the
special role of this type of Turing reduction will be discussed in Section 4.5.
The techniques for designing Turing reductions go back to the influential work
of Karp (1972).

4.2 Reductions Between Various Variants of a Problem

In Section 2.2 we introduced algorithmic problems including large groups
of problems like TSP that have many special cases. That special problems
like TSP2 can be reduced to more general problems like TSP (i.e., that
TSP2 ≤T TSP) is trivial (algorithms for more general problems automatically
solve the more specialized problems), but not particularly enlightening. More
interesting is the investigation of whether TSP ≤T TSP2, that is, whether a
special case is already as hard as the general problem. Such results will be
shown in Section 4.3 and in subsequent chapters. Surprisingly, it will be the
case that TSP ≡T TSP2.

Here we want to compare the complexity of evaluation and decision prob-
lems with their underlying optimization problems. Let Aopt, Aeval, and Adec

denote the optimization, evaluation, and decision variants of the problem A.
We want to show that for many natural problems A,

Adec ≡T Aeval ≡T Aopt .

We will not formalize a definition of degenerate problems (ones for which the
three variants are not Turing equivalent), but we will give conditions under
which the necessary Turing reductions are possible. We always have

Adec ≤T Aeval ,

since we can compare the value of an optimal solution with the bound given
in the decision problem. Solutions to optimization problems have a certain
quality that is assigned a value. If this value can be computed in polynomial
time for any solution, then

Aeval ≤T Aopt ,

since we can run the optimization algorithm to obtain an optimal solution
and then compute the value of this optimal solution. All of the problems

4.2 Reductions Between Various Variants of a Problem 47

introduced in Section 2.2 satisfy this condition, as can be easily verified. The
cost of a traveling salesperson tour, for example, can be computed in linear
time.

To ensure that
Aeval ≤T Adec ,

we use the following sufficient property: The value of each solution is a natural
number, and we can efficiently find a bound B such that the value of an
optimal solution lies between −B and B, and the binary representation of B
is polynomial in the bit length of the input. For the problems in Section 2.2,
solutions are always non-negative, and are usually very easy to obtain. For
example, we may choose B to be

• n for BinPacking, since it is always possible to use a separate bin for each
item;

• n for VertexCover, CliqueCover, Clique, or IndependentSet, since the
values of the solutions are the sizes of a subset of the vertices of the graph
or the number of sets in a partition of the vertex set;

• m for the optimization variant of Sat, since the value of a solution is the
number of satisfiable clauses;

• a1 + · · · + an for Knapsack.

For TSP we also allow the distance ∞. Let dmax be the maximal finite
distance. Then n ·dmax is an upper bound for the cost of a tour that has finite
cost. The cost of each tour is in {0, . . . n · dmax} ∪ {∞}.

In each case we have a list of possible solution values of the form −B, . . . , B
or −B, . . . B,∞. We can use an algorithm for the decision problem to perform
a binary search on these values, treating ∞ like B +1. The number of calls to
the decision problem algorithm is bounded by �log(2B +2)�, which is polyno-
mially bounded. In many cases, roughly log(n) calls to the decision problem
algorithm are sufficient. For problems that may have very large numbers as
part of their input (like TSP and Knapsack), the number of calls may depend
on the size of these numbers.

Finally, we want to investigate when we also have

Aopt ≤T Aeval .

We use the following method: First, we use the algorithm for Aeval to compute
the value wopt of an optimal solution. Then we try to establish portions of the
solution. For this we try out possible decisions. If the solution value remains
wopt, we can stick with our decision; otherwise that decision was false and we
must try out a new decision. By working this out for five specific problems,
we will demonstrate that this approach can be routinely applied.

We will start with Max-Sat. Let wopt be the maximal number of simulta-
neously satisfiable clauses. Let x1 = 1. Clauses containing x1 are then satisfied
and can be replaced by clauses with the value 1, while x1 can be stricken from

48 4 Reductions – Algorithmic Relationships Between Problems

any clauses that contain it. (Any empty clause is unsatisfiable.) If the result-
ing set of clauses still has an optimal value of wopt, then x1 = 1 belongs to
an optimal variable assignment, and we can look for suitable assignments for
x2, . . . , xn in the resulting clause set. If the resulting set of clauses has an
optimal value that is smaller than wopt (larger is impossible), then we know
that x1 = 1 does not belong to an optimal variable assignment. Thus x1 = 0
must belong to an optimal solution and we can search for suitable assignments
for x2, . . . , xn in the clause set that results from setting x1 = 0 in the original
clause set. The number of calls to the algorithm for the evaluation problem is
bounded by n + 1, all the calls are for instances that are no larger than the
original, and the additional overhead is modest.

For the clique problem Clique, we first determine the size wopt of the
largest clique. In order to decide if a vertex v must belong to a largest clique,
we can remove the vertex and the edges incident to it from the graph, and
check if the remaining graph still has a clique of size wopt. If this is the case,
then there is a clique of size wopt that does not use vertex v. Otherwise the
vertex v must belong to every maximal clique, so we remove v, the edges
incident to v, and all vertices not adjacent to v from the graph and look for
a clique of size wopt − 1 in the remaining graph. By adding the vertex v to
such a clique, we obtain the desired clique of size wopt. Once again, n + 1
queries about graphs that are no larger than the original input suffice to find
the optimal solution.

For TSP we can output any tour if wopt = ∞. Otherwise, we can tem-
porarily set finite distances di,j to ∞ to see if the stretch from i to j must be
in an optimal tour. If it is required for an optimal tour, then we return di,j

to its original value, otherwise we leave the value ∞. Once we have done this
sequentially for all distances we obtain a distance matrix in which exactly the
edges of an optimal tour have finite values. In this case the number of queries
to the algorithm for the evaluation problem is N + 1, where N is the number
of finite distance values.

The situation for the bin packing problem is somewhat more complicated.
If we decide that certain objects go in certain bins, then the remaining capacity
of those bins is no longer b, and we obtain a problem with bins of various sizes,
which by the definition of BinPacking is no longer a bin packing problem,
so we can’t get information about this situation by querying the evaluation
problem. For a generalized version of BinPacking with bins of potentially
different sizes, this approach would work. But in our case we can employ a
little trick. We can “glue together” two objects so that they become one new
object with size equal to the sum of the sizes of the two original objects. If
this doesn’t increase the number of bins required, we can leave the two objects
stuck together and work with a new instance that has one fewer object. If
object i cannot be glued to object j, then this will subsequently be the case
for all pairs of new superobjects one of which contains object i and the other
of which contains object j. So

(
n
2

)
tests are sufficient. In the end we will have

4.3 Reductions Between Related Problems 49

wopt superobjects, each consisting of a number of objects stuck together, and
each fitting into a bin.

Finally we want to mention the network flow problem NetworkFlow. This
problem is solvable in polynomial time (see, for example, Ahuja, Magnanti,
and Orlin(1993)). So we can solve the optimization problem in polynomial
time without even making any use of the evaluation variation.

The optimization, evaluation, and decision variants of the optimiza-
tion problems that are of interest to us are all Turing equivalent. So
from the point of view of complexity theory, we are justified in restrict-
ing our attention to the decision variants.

4.3 Reductions Between Related Problems

In this section and the following section we want to use examples to introduce
and practice methods for designing Turing reductions. These examples have
been chosen in such a way that the results will also be useful later. On the
basis of the results in Section 4.2, we will always consider the decision variant
of optimization problems. All of the problems treated here were defined in
Section 2.2.

We begin with TSP and its variants. Since we will see later that DHC

(the directed Hamitonian circuit problem) is a difficult problem, the following
theorem allows us to extend this claim to the problems HC, TSP�, TSP2 (and
also TSPN for N ≥ 2), and TSP.

Theorem 4.3.1. DHC ≡T HC ≤T TSP2,�,sym.

Proof. HC ≤T DHC: This statement is easy to show. Undirected edges can
be traveled in either direction. From the given undirected graph G = (V, E),
we generate a directed graph G′ = (V, E′) with the same vertex set in which
undirected edges {v, w} in G are replaced by pairs of directed edges (v, w) and
(w, v) from v to w and from w to v in G′. It is clear that G has an undirected
Hamiltonian circuit if and only if G′ has a directed Hamiltonian circuit. So we
can make a call to the algorithm for DHC with input G′ and use the answer
(yes or no) as the answer for whether G is in HC. Directed graphs have more
degrees of freedom, and so it is not surprising when a problem on undirected
graphs can be Turing reduced to a problem on directed graphs.

DHC ≤T HC: According to our last remark, this Turing reduction will be
more difficult to construct. Our goal is use undirected edges but to force them
to be traveled in only one direction. For this it suffices to replace vertices with
tiny graphs. In polynomial time we will transform a directed graph G = (V, E)
into an undirected graph G′ = (V ′, E′) that has a Hamiltonian circuit if
and only if this is also the case for G. Then it will suffice to call the HC

algorithm on graph G′ and to copy the answer. Let V = {v1, . . . , vn}. Then
V ′ := {vi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}. The vertices vi,1, vi,2, and vi,3 are intended

50 4 Reductions – Algorithmic Relationships Between Problems

to “represent” the vertex vi ∈ V . We always include the edges {vi,1, vi,2} and
{vi,2, vi,3}. An edge (vi, vj) ∈ E is represented in G′ by the edge {vi,3, vj,1},
and an edge (vk, vi) ∈ E by the edge {vk,3, vi,1}. The direction of an edge in
G that is adjacent to vi is reflected in where the edge is attached to the vertex
triple (vi,1, vi,2, vi,3). At least the information about the direction of the edge
is not lost. Figure 4.3.1 shows as an example the section of such a graph G
that is adjacent to v10.

v14,3

v14

v20
v20,1

v10 v10,3v10,1 v10,2⇒

v4,3
v4

v7

v7,3 v7,1

Fig. 4.3.1. Illustration of the Turing reduction DHC ≤T HC.

If G contains a Hamiltonian circuit, we can renumber the vertices so that
this circuit is the vertex sequence (v1, v2, . . . , vn, v1). Then G′ contains the
“corresponding” Hamiltonian circuit that results from replacing the edge
(vi, vj) with the path (vi,3, vj,1, vj,2, vj,3). (This is only true for n > 1, but
for n = 1 we don’t need any oracle queries at all.)

Now let’s assume that G′ has a Hamiltonian circuit H ′. In G′, every vertex
vi,2 has degree 2. This means that the Hamiltonian circuit must contain the
edges {vi,1, vi,2} and {vi,2, vi,3} for every i ∈ {1, . . . , n}. An undirected graph
G′ with Hamiltonian circuit H ′ always contains also the Hamiltonian circuit
H ′′ formed by traversing H ′ in the reverse direction, so we can choose the
subpath (v1,1, v1,2, v1,3). Now H ′ must contain an edge from v1,3 to a vertex
vj,1, for some j �= 1. In order to reach vj,2 along the circuit, the next portion
of the path must be (vj,1, vj,2, vj,3). This argument can be continued, until H ′

connects all the triples (vi,1, vi,2, vi,3) in a suitable way. If the vk-triple follows
the vi-triple, then we can choose the edge (vi, vk) in G.

HC ≤T TSP2,�,sym: Let G = (V, E) be an undirected graph for which we
want to decide whether or not there is a Hamiltonian circuit. Then we can
make the following query to a TSP-oracle. If V = {1, . . . , n}, then there are
n cities. Let

di,j =

{
1 if {i, j} ∈ E
2 otherwise.

That is, we represent edges with short distances. A Hamiltonian circuit
in G has cost n in the TSP problem. Every circuit that doesn’t simulate a
Hamiltonian circuit in G has cost at least n + 1. So by asking if there is a

4.3 Reductions Between Related Problems 51

circuit with cost at most n we obtain an answer to the question of whether
G has a Hamiltonian circuit. The TSP input has the distance values from the
set {1, 2} and is symmetric. Because the distances are from the set {1, 2}, the
triangle inequality di,j ≤ di,k + dk,j is always satisfied.

For all our reductions, we always want to give the required resources. For
HC ≤T DHC the problems size is related to the number of vertices n and
the number of edges m. Then p(n, m) = O(n + m), q(n, m) = 1, and the
new graph has n vertices and 2m edges. For DHC ≤T HC we have p(n, m) =
O(n + m), q(n, m) = 1, and the new graph has 3n vertices and 2n + m edges.
For HC ≤T TSP2,�,sym, we have p(n, m) = O(n2), q(n, m) = 1, and we obtain
an instance of TSP with n cities. ��

We have already seen in this example that it is important that the proper-
ties of the instance to be solved be “coded into” an instance of the problem for
which an algorithm is assumed. In particular, this is necessary when we want
to reduce a problem like DHC to an “apparently more specialized” problem
like HC. With closely related problems like those in the proof of Theorem 4.3.1
this can happen by means of local replacement. In local replacement, each sim-
ple component of an instance of one problem is represented by a little “gadget”
in an instance of the other. 3-Sat is not only apparently but actually a spe-
cial case of Sat. The following Turing reduction is a model example of local
replacement.

Theorem 4.3.2. Sat ≡T 3-Sat.

Proof. That 3-Sat ≤T Sat is clear. (But see the discussion following this
proof.)

Now we must design a Turing reduction Sat ≤T 3-Sat. First, we note
that clauses with fewer than three literals can be extended by repetition of
variables to clauses that have exactly three literals. This is only a syntactic
change, but it allows us to assume that all clauses have at least three literals.

Consider a clause c = z1 + · · · + zk (+ represents OR) with k > 3 and
zi ∈ {x1, x1, . . . , xn, xn}. We want to construct clauses of length 3 with the
“same satisfaction properties”. We can’t choose z1 + z2 + z3, since we can
satisfy z1 + · · · + zk without satisfying z1 + z2 + z3. So we choose a new
variable y1 and form a new clause z1 + z2 + y1. The new variable can satisfy
the clause if c is satisfied by one of the literals z3, . . . , zk. It doesn’t make
sense to now choose z3 + z4 + y2 as the next clause, because then we could
satisfy the new clauses without satisfying c. The trick consists of connecting
the clauses in such a way that the new variables occur in two new clauses,
once positively and once negatively, and thus connect these two clauses. All
together the new clauses are connected like a chain. We will describe the new
clauses for k = 7, from which the general construction is immediately clear:

z1 + z2 + y1, y1 + z3 + y2, y2 + z4 + y3, y3 + z5 + y4, y4 + z6 + z7.

We do this for all clauses, using different new variables for each.

52 4 Reductions – Algorithmic Relationships Between Problems

If the given set of clauses has a satisfying assignment, then we can assign
values to the variables in such a way that the new set of clauses is also satisfi-
able. If c is satisfied, then zi = 1 for some i. Thus one of the clauses of length
3 that came from clause c is already satisfied. All the clauses to the left of this
clause can be satisfied by setting the positive y-literal to 1, and all the clauses
to the right of this clause can be satisfied by setting the negative y-literal to
1. In our example, if z3 = 1, then we set y1 = 1 and y2 = y3 = y4 = 0.

On the other hand, if the new clause set is satisfied by an assignment, then
it is not possible that all of the new clauses that come from c are satisfied by
the y-literals alone. If i is the smallest index for which yi = 0, then the ith
clause (z1 +z2 +y1 for i = 1, and yi−1 +zi+1 +yi otherwise) is not satisfied by
a y-literal. If all yi = 1, then the last clause is not satisfied by the y-literals.
Therefore, the assignment must satisfy at least one zi, and hence satisfy c.

If we measure the input length in terms of the number of literals l in the
clauses, then p(l) = O(l), q(l) = 1, and r(l) ≤ 3l. ��

It is always easier to reduce a problem to a more general problem. The
reduction 3-Sat ≤T Sat, for example, is just as easy as the reduction A ≤T A
for any problem A. The reductions HC ≤T DHC and HC ≤T TSP2,�,sym were
also Turing reductions from HC to more generalized problems. A Turing re-
duction A ≤T B of this kind is called a restriction, since problem A represents
a restricted version of problem B. Another example is the following Turing
reduction from Partition to BinPacking.

Theorem 4.3.3. Partition ≤T BinPacking.

Proof. Partition is a special case of BinPacking in which there are only two
bins and the objects are to completely fill the two bins. Formally, for Partition

we are given the numbers w1, w2, . . . , wn, and the question is whether there
is a set of indices I ⊆ {1, 2, . . . , n} such that the sum

∑
i∈I wi is equal to half

the total sum
∑

i∈{1,...,n} wi. If we now apply a BinPacking algorithm to the

numbers w1, . . . , wn with two bins of size b := �(w1 + · · · + wn)/2 we obtain
the correct answer for Partition as well. In the case that w1 + · · · + wn is
odd, then the instance is rejected in both cases. Otherwise the instances are
equivalent since if the sum

∑
i∈I wi = b, then

∑
i�∈I wi = b, too. If we count

the number of w-values as the size of the input, then p(n) = O(n), q(n) = 1,
and r(n) = O(n). ��

Restrictions appear to be a simple, but not particularly interesting, tool,
since we can already “see” that we are dealing with a generalization. Some
problems, however, “hide” their commonalities so well that we don’t imme-
diately recognize the similarities. For example, Clique, IndependentSet, and
VertexCover are essentially the same problem. While this is immediately
obvious for Clique and IndependentSet, we have to look more closely to
discover the similarity between these two problems and VertexCover.

4.4 Reductions Between Unrelated Problems 53

Theorem 4.3.4. Clique ≡T IndependentSet ≡T VertexCover.

Proof. Clique ≡T IndependentSet: With Clique we are searching for cliques,
and with IndependentSet we are searching for anti-cliques. If we construct
the graph G′ = (V, E′) from the graph G = (V, E) such that G′ includes
exactly those edges that G does not include, then cliques are transformed into
anti-cliques and vice versa. For this reduction p(n) = O(n2), since we consider
all
(
n
2

)
possible edges, q(n) = 1 and r(n) = n.

IndependentSet ≤T VertexCover: Let the graph G = (V, E) and the
bound k be an instance of IndependentSet. Then we let the VertexCover

algorithm process the same graph, but with bound n − k. An independent
set with k vertices implies that the remaining n − k vertices cover all the
edges. On the other hand, if n − k vertices cover all the edges, then the
k remaining vertices must form an independent set. So the VertexCover

algorithm provides the right answer to the IndependentSet question. In this
reduction p(n, m) = O(n + m), since we must copy the graph G, q(n, m) = 1,
and the new graph has the same size as the original.

VertexCover ≤T IndependentSet : This is shown using the same reduc-
tion as for IndependentSet ≤T VertexCover. ��

It is worth noting that our Turing reductions are very efficient.

4.4 Reductions Between Unrelated Problems

Now we want to find Turing reductions between problems that do not seem
a priori to be very similar – not until we have demonstrated that there is a
Turing reduction do we see that they are algorithmically similar. For example,
we will show that the marriage problem 2-DM and the championship prob-
lem Championship with the a-point rule are special flow problems, i.e., that
they are Turing reducible to NetworkFlow. Since NetworkFlow is solvable
in polynomial time, 2-DM and Championship must also be in P. We get ef-
ficient algorithms for 2-DM and Championship directly from known efficient
algorithms for NetworkFlow. In fact, when these reductions were designed,
polynomial time algorithms for NetworkFlow were already known. But in
principle, one could have designed the Turing reductions without knowing
whether NetworkFlow is difficult or easy. Since these reductions serve to de-
velop efficient algorithms, we will consider the optimization variants of 2-DM

and NetworkFlow.

Theorem 4.4.1. 2-DM ≤T NetworkFlow.

Proof. The marriage problem 2-DM can be modeled as a graph problem. The
vertex set consists of the set U , which represents the women, together with
the set W that represents the men. An edge (u, w) with u ∈ U and w ∈ W
represents a potential happily married couple. There are no edges between

54 4 Reductions – Algorithmic Relationships Between Problems

two vertices in U or between two vertices in W . The task is to find the largest
possible set of edges in which no vertex appears more than once.

From this we construct the following input to a NetworkFlow algorithm.
The edges are directed from U to W . We add to the graph two new vertices
s and t, and edges from s to every vertex in U and from every vertex in W
to t. All edges have capacity 1. An example is shown in Figure 4.4.1.

t

U W

s

Fig. 4.4.1. Illustration of the Turing reduction 2-DM ≤T NetworkFlow.

The NetworkFlow algorithm produces a maximal flow. Since flows have
integer values, each edge has a flow of either 0 (no flow) or 1 (some flow).
We claim that the set of edges from U to W that carry some flow forms a
maximum matching (when considered in undirected form).

This can be shown as follows: Suppose we are given a matching with k
edges. After renumbering the vertices, we can assume this is (u1, w1), . . . ,
(uk, wk). Then there is a flow with value k that places flow on these edges
and the edges (s, u1), . . . , (s, uk), (w1, t), . . . , (wk, t). On the other hand, every
flow with value k must use k edges that leave s and k edges that arrive at t.
So k vertices in U receive flow, and k vertices in W must pass flow to t. Every
vertex ui, 1 ≤ i ≤ k, must send its flow to a vertex wj , 1 ≤ j ≤ k. Since all
the vertices w1, . . . , wk are reached, the k edges from U to V do not repeat
any vertices and, therefore, form a matching.

For this reduction p(n, m) = O(n + m), q(n, m) = 1, and the instance
of NetworkFlow has n + 2 vertices and n + m edges if the instance of the
matching problem has n vertices and m edges. ��

The work to solve 2-DM involves a linear amount of overhead plus the
work required to solve an instance of the network flow problem for a graph
with n+2 vertices and n+m edges. Furthermore, the instance of the network
flow problem will have some special properties.

The championship problem Championship with the a-point rule (abbrevi-
ated a-Championship) can also be coded as a special network flow problem.

Theorem 4.4.2. For the championship problem a-Championship with the a-
point rule we have

a-Championship ≤T NetworkFlow .

4.4 Reductions Between Unrelated Problems 55

Proof. First, we can assume that the selected team wins all its remaining
games and by doing so attains a total of A points. For the other n teams and
the other m games that remain to be played we need to decide if there are
possible outcomes such that each team ends up with at most A points. Just
as in the proof of Theorem 4.4.1, we will construct a network with four layers
such that the edges only go from layer i to layer i+1. Layer 0 contains vertex
s and layer 3 contains vertex t. Layer 1 contains m vertices that represent the
m games to be played, and layer 2 contains n vertices that represent the n
teams that still have games to play. There is no vertex for the selected team.
There is an edge from s to each game vertex with capacity a, so the flow is
bounded by m · a. Our idea is to construct an instance of the network flow
problem in such a way that a flow with value m · a simulates outcomes of the
games that lead to a league championship for the selected team. Furthermore,
it should not be possible for the chosen team to be league champion if the
value of the maximum flow is less than m · a.

Suppose a game vertex receives a flow of a from s which it must then pass
along. The natural thing to do is to add an edge from each game vertex to each
of the two teams playing in that game. The edges between layer 1 and layer 2
have capacity a to simulate the a-point rule. In this way the team vertices
receive flow (or points) from the game vertices, perhaps so many points that
they pass the selected team in the standings. If team j has aj points so far,
it may only win A− aj additional points in its remaining games. So the edge
from team j to t has capacity A − aj . (For an example, see Figure 4.4.2.)

If the selected team can become league champion, then the corresponding
game outcomes lead to a flow with value m · a. The vertex s sends flow a
to each game vertex, which divides the flow among the two competing teams
according to the outcome of the game. Since the jth team does not catch the
selected team, it receives a flow of at most A− aj , which it can pass along to
vertex t.

On the other hand, every flow with value m · a “codes” outcomes of the
games such that the selected team is league champion. Vertex s must send
flow a to each game vertex in order for the total flow to be m ·a. Each integer
partition at each game vertex symbolizes a legal outcome according to the
a-point rule. In order to obtain a flow of m · a, each team vertex must pass
along all the flow entering it to vertex t. So team j receives a flow of at most
A − aj (i.e., at most A − aj points).

The network has n+m+2 vertices, n+3m edges, and can be constructed
in time O(n + m). ��

Although the championship problem is really only a decision problem, the
solution using the network flow problem not only provides a correct answer
but also provides outcomes to the games that lead to league championship for
the selected team. As an example, we consider an actual situation from the
1964–65 German soccer league (Bundesliga) when, with two games remaining
for each team before the end of the regular season, the situation was not

56 4 Reductions – Algorithmic Relationships Between Problems

completely trivial. At that time the (0, 1, 2)-point rule (i.e., the 2-point rule)
was being used. Of interest are only the following teams, their standings, and
their remaining opponents.

Team Points Remaining Opponents

1. SV Werder Bremen (SVW) 37 BVB, FCN.
2. 1. FC Cologne (1. FC) 36 FCN, BVB.
3. Borussia Dortmund (BVB) 35 SVW, 1. FC.
4. 1860 Munich (1860) 33 MSV, HSV.
5. 1. FC Nurnberg (FCN) 31 1. FC, SVW.

If 1860 Munich wins its last two games, they will have 37 points, and could
pass SVW based on a better goal differential. But then SVW would have to
lose both of its games. . . If one completes this line of reasoning, one arrives
at the conclusion that 1860 Munich cannot win the league championship.

2

2

2
2

2

2
2

2

2

6

1

2

0

2

2

2

SVW

s

FCN

t

SVW – BVB

BVB – 1. FC

FCN – SVW

1. FC – FCN

BVB

1. FC

Fig. 4.4.2. Using Network Flow to decide the Championship Problem.

Now we come to reductions between problems that will later prove to be
difficult. Since Sat will be the first problem that we will identify as difficult,
and since we have already shown that Sat can be Turing reduced to 3-Sat, we
will reduce 3-Sat to two further problems, the clique problem (Clique) and
the directed Hamiltonian circuit problem (DHC). As with many reductions,
the Turing reduction from 3-Sat to Clique is already in the monograph by
Garey and Johnson. Sipser (1997) has presented simpler and clearer proofs
for some reductions, including the reduction 3-Sat ≤T DHC.

For such different looking problems like 3-Sat and Clique or DHC, the
techniques of restriction and local replacement do not suffice for the design of
a Turing reduction.

Theorem 4.4.3. 3-Sat ≤T Clique.

Proof. An instance of 3-Sat is specified by the variables x1, . . . , xn and the
clauses c1, . . . , cm. For each clause we use a component that consists of a
graph with three vertices and no edges. All together we have 3m vertices
vi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ 3. The vertex vi,j represents the jth

4.4 Reductions Between Unrelated Problems 57

literal in the ith clause. The clause components now need to be connected
via edges in a way that the edges reflect the satisfiability structure. So we
connect two vertices vi,j and vi′,j′ from different components (i.e., i �= i′) if
and only if these two literals are simultaneously satisfiable, that is if they
don’t contradict each other. Two literals contradict each other precisely when
one is the negation of the other. Since satisfiability of a 3-Sat formula means
the simultaneous satisfiability of all m clauses, we are interested in cliques
of size m. Our claim is that c1, . . . , cm are simultaneously satisfiable if and
only if the graph G = (V, E) that we have just described has a clique of size
m. So we are able to use an algorithm for the clique problem to answer the
satisfiability question for c1, . . . , cm.

Let a ∈ {0, 1}n be a truth assignment for x1, . . . , xn that satisfies all
the clauses. Then each clause contains at least one satisfied literal. For each
clause we select one vertex that represents this satisfied literal. These vertices
form a clique of size m in the graph G since they belong to different clause
components and since the literals they represent are all satisfied by a, they
cannot be contradictory.

On the other hand, let V ′ be a clique with m vertices from G. Since vertices
in the same clause component are not connected by edges, and there are m
clauses, there must be exactly one vertex from each clause component. Now we
define a satisfying assignment a = (a1, . . . , an). The vertices in V ′ represent
literals. It is not possible for xi and xi to both be represented in V ′, since
such vertices are not connected by edges in G. If the literal xi is represented
in V ′, then we let ai = 1, otherwise we let ai = 0. This assignment satisfies
all the literals represented in V ′, and therefore all of the clauses.

The graph constructed in this reduction has 3m vertices and O(m2) edges.
Furthermore, p(n, m) = O(m2) and q(n, m) = 1. ��

For later purposes it is interesting that the Turing reduction presented in
the proof of Theorem 4.4.3 also constructs a connection between the opti-
mization variants of these problems. The same arguments used in the proof of
Theorem 4.4.3 lead to the conclusion that if k is the largest number of clauses
that can be simultaneously satisfied, then the largest clique in G has k ver-
tices, since from every assignment that satisfies l clauses, we can efficiently
compute a clique of size l and vice versa.

This Turing reduction is illustrated on an example in Figure 4.4.3. For
reasons of clarity rather than showing the edges of the graph, this figure uses
dashed lines to show the edges not in the graph. The example formula has
three clauses over four variables.

Theorem 4.4.4. 3-Sat ≤T DHC.

Proof. This Turing reduction uses variable components and clause compo-
nents (see Figure 4.4.4). The clause component for each clause cj consists of
a single vertex that is also denoted cj . The variable components are more
complicated. If xi and xi occur a total of bi times in the clauses, then the

58 4 Reductions – Algorithmic Relationships Between Problems

⇒

x1 + x2 + x3

x1 + x2 + x4

x1 + x2 + x3

Fig. 4.4.3. An example of the Turing reduction 3-Sat ≤T Clique. The dashed
edges represent edges not present in the graph. A 3-clique representing the satisfying
assignment (1, 1, 0, 0) is indicated by double cirles.

component for xi has exactly 3 + 2bi vertices. The three vertices vi,1, vi,2,
and vi,3 form the border of the component. There are also edges (vi,1, vi,2),
(vi,1, vi,3), (vi,2, vi+1,1), and (vi,3, vi+1,1), where we identify n + 1 with 1.

In Figure 4.4.4, u ↔ w denotes the edges (u, w) and (w, u). The variable
components are connected in a ring. If we ignore the clause components and
always start Hamiltonian circuits at v1,1, then we obtain exactly 2n Hamilto-
nian circuits since at each vertex vi,1 we can decide to go to vi,2, then from
left to right through the list to vi,3, and finally on to vi+1,1, or we can switch
the roles of vi,2 and vi,3 and traverse the list from right to left. The idea
of this construction is to identify these 2n Hamiltonian circuits with the 2n

truth assignments for the n variables. The step from vi,1 to vi,2 is meant to
symbolize the choice ai = 1, and the step from vi,1 to vi,3, the choice ai = 0.

Now the components need to be connected in such a way that satisfying
assignments and Hamiltonian circuits on the whole graph correspond to each
other. The linear list between vi,2 and vi,3 is divided into bi groups of two
adjacent vertices each. These groups correspond to the occurrence of xi or xi

in the clauses. The variable xi in cj is represented by an edge “→ j” from
the left vertex of the pair to cj and an edge “j →” from cj to the right
vertex of the pair. If our goal is achieved, we can apply a DHC algorithm to
the constructed graph to answer the question of whether all the clauses are
simultaneously satisfiable.

From a satisfying assignment a we obtain a Hamiltonian circuit as follows:
We select in each clause one satisfied literal and the corresponding pair from
one of the linear lists. From vi,1 we select the edge to vi,2 if ai = 1, otherwise
we choose the edge to vi,3. Then we traverse the corresponding list. If we are
coming from vi,2 (i.e., going from left to right), then we encounter the left
vertex of each pair first. One of these pairs will correspond to the clause cj

that contains the variable xi. If this variable occurs positively in clause cj ,
then at this point we can make a little detour, going from the left vertex to cj

and immediately returning to the right vertex of the pair. On the other hand,
if xi occurs negatively in cj (i.e., the literal xi occurs in clause cj), then we
can argue similarly that it is possible to traverse the list from right to left,
again making our small detour along the way. In the end, each clause vertex cj

4.4 Reductions Between Unrelated Problems 59

1

x1

v1,2

x2

v2,3v2,2

v3,3v3,2

x3

v4,2

x4

v1,3

v1,1

v2,1

v3,1

v4,1

v4,3

c1 = x1 + x2 + x3

c2 = x1 + x2 + x4

c3 = x1 + x2 + x3

1 2 3

1 2 3

2

3

Fig. 4.4.4. An example of the Turing reduction 3-Sat ≤T DHC. The notation
“→ i” stands for an edge to vertex ci, and the notation “i →” stands for an edge
from vertex ci.

is integrated once in the Hamiltonian circuit corresponding to the assignment
a, and so we obtain a Hamiltonian circuit on the entire graph.

Now suppose there is a Hamiltonian circuit on the entire graph. Every
clause vertex must appear along this circuit. The vertex cj is reached by an
edge labeled “→ j” from a vertex uj , and left by an edge labeled “j →” to
a vertex wj . Our construction guarantees that the vertices uj and wj form a
pair: The vertex w∗

j that forms a pair with uj is only reached by two edges
– one from uj and one from cj – so if w∗

j is not reached by the edge from uj

(because we leave uj to go to cj), then it must be reached by the edge from
cj , i.e., wj = w∗

j . From this it follows that the Hamiltonian circuit on the
entire graph arises by adding our little detours to an underlying Hamiltonian
circuit on the variable components. This means we can consider the truth

60 4 Reductions – Algorithmic Relationships Between Problems

assignment that corresponds to this underlying circuit. If cj is reached along
the way through the xi list, and if this list is traversed from left to right (i.e.,
starting at vi,2), then ai = 1 and xi occurs positively in clause cj since we
were able to make a detour to cj . A similar statement holds if we start at vi,3

with ai = 0 and xi occurs negatively in cj .
For each variable we have three vertices along the outline of the corre-

sponding component, and for each clause we have a clause vertex and six
vertices in three pairs among the variable components. So we have 3n + 7m
vertices, each of degree at most three. Furthermore, p(n, m) = O(n + m) and
q(n, m) = 1. ��

4.5 The Special Role of Polynomial Reductions

Now that we have designed a number of Turing reductions and discovered
surprising connections between very different looking problems, we notice that
we have only made full use of the options of Turing reductions in Section 4.2.
In Sections 4.3 and 4.4, each proof that A ≤T B made only a single call to the
algorithm for B. For all reductions between decision problems, the answer to
this single query to B could be used as the answer for our instance of problem
A. With so many examples, this can’t be merely coincidence, so we want to
give these special reductions a name and a separate definition.

Definition 4.5.1. The decision problem A is polynomial time reducible (or
polynomial-time many-one reducible) to the decision problem B, denoted
A ≤p B, if there is a polynomial-time computable function f that maps in-
stances of A to instances of B in such a way that for the corresponding lan-
guages LA and LB we have

∀x [x ∈ LA ⇔ f(x) ∈ LB] .

Since we only make one call to the algorithm for B and have no need
to process the answer for B any further, we can capture all the work of this
reduction in the computation of f(x) from x. The condition “x ∈ LA ⇔ f(x) ∈
LB” guarantees that the decision as to whether f(x) ∈ LB agrees with the
decision as to whether x ∈ LA.

The terminology “many-one reducible” is meant to indicate that f is not
required to be injective. Many-one reductions with injective transformations
f play a special role that we do not investigate further. We will only mention
that bijective transformations f represent an isomorphism between A and B.

We will call two decision problems A and B polynomially equivalent, de-
noted A ≡p B, if A ≤p B and B ≤p A. Naturally, ≡p is also an equivalence
relation. Clearly A ≡p A, and the statements A ≡p B and B ≡p A are by
definition equivalent. It only remains to show that ≤p is transitive, since the
transitivity of ≡p follows from this immediately. Let A ≤p B and B ≤p C as
witnessed by the polynomial-time computable transformations f and g. The

4.5 The Special Role of Polynomial Reductions 61

function g ◦ f then maps instances of A via instances of B over to instances
of C and is computable in polynomial time. The last claim follows just as in
the considerations of Turing reductions in Section 4.1. Finally, from

∀x [x ∈ LA ⇔ f(x) ∈ LB] and ∀y [y ∈ LB ⇔ g(y) ∈ LC]

it follows that
∀x [x ∈ LA ⇔ g ◦ f(x) ∈ LC] .

More strongly restricted reduction notions like ≤p (as compared to ≤T)
allow for a finer differentiation between complexity classes. Polynomial re-
ductions will prove to allow sufficiently many problems to be classified as
complexity theoretically similar, while still being strong enough to potentially
distinguish between the two kinds of one-sided error.

It is clear that for every language L, L ≤T L. In order to decide if x ∈ L
we use the algorithm for L to decide if x ∈ L. By negating the answer we get
the correct answer for x ∈ L. This negation of the answer is not allowed in
polynomial reductions, so it is possible that for many languages L, L �≤p L
and that the two kinds of one-sided error are not complexity theoretically
similar.

We have seen that Turing reductions we have constructed between deci-
sion problems – with the exception of L ≤T L – have all been polynomial
reductions. But polynomial reductions are limited to decision problems since,
in general, a solution for an instance of an optimization problem B is not a
solution for an instance of the optimization problem A.

Turing reductions serve to determine the algorithmic similarity of
problems. For decision problems, polynomial reductions provide a finer
classification and offer the possibility of distinguishing between the two
variants of the concept of “one-sided error”. Very differently formu-
lated problems can prove to be algorithmically similar. Furthermore,
the decision, evaluation, and optimization variants of many optimiza-
tion problems are algorithmically similar.

We summarize the results of this chapter for decision problems, Turing
reductions that are actually polynomial reductions, and drawing conclusions
from the fact that NetworkFlow ∈ P:

• 2-DM, a-Championship,NetworkFlow ∈ P.

• Partition ≤p BinPacking.

• Sat ≤p 3-Sat
≤p Clique ≡p IndependentSet ≡p VertexCover

≤p DHC ≡p HC ≤p TSP2,�,sym .

5

The Theory of NP-Completeness

5.1 Fundamental Considerations

With the help of reduction concepts like ≤T and ≤p, we have been able to
establish the algorithmic similarity of a number of problems. To this point,
however, we have been proceeding rather unsystematically, and have only been
becoming familiar with these notions of reduction. Now we want to investigate
what we accomplish with further reductions between important problems.

Turing equivalence (≡T) is an equivalence relation on the set of all algo-
rithmic problems, and so partitions this set into equivalence classes. On the
set of equivalence classes, Turing reducibility (≤T) leads to a partial order
if for any two equivalence classes C1 and C2 we define C1 ≤T C2 if A ≤T B
holds for all A ∈ C1 and all B ∈ C2. This is equivalent to A ≤T B for some
A ∈ C1 and some B ∈ C2. Clearly P forms one of these equivalence classes.
For A, B ∈ P we have A ≤T B, since we don’t even need to use an algorithm
for B in order to compute A in polynomial time. On the other hand, if B ∈ P

and A ≤T B, then by definition A ∈ P.
So if we get to know the partial order described by “≤T” on these classes,

then we will have learned much about the complexity of all problems. We
are, however, still far from such a complete picture. Based on the results of
Chapter 4, we can hope to show that many problems belong to the same
equivalence class with respect to ≡T. It follows that either all of these prob-
lems are efficiently solvable or none of them is. This is the formalization of
the comment made in Chapter 1 that out of a thousand secrets, one great
overarching secret is formed. The previous comment can be extended to the
complexity class ZPP and to the class of problems contained in BPP that have
unique solutions or are optimization problems for which the value of a solution
can be computed in polynomial time. This follows from the results obtained
in Chapter 3 that show that in these cases we can reduce the error- or failure-
probability so that even polynomially many calls have a sufficiently small
error- or failure-probability. If we use BPP to denote this restricted BPP-class
as well, we obtain the following:

64 5 The Theory of NP-Completeness

For any set of Turing equivalent problems and each of the complexity
classes P, ZPP, and BPP, it is the case that either all the problems
belong to the complexity class or none of them do.

If we restrict our attention to decision problems, then polynomial reducibil-
ity (≤p) is also available. Recall that for the relation A ≤p B to hold, on each
instance of problem A the algorithm for B may only be called once, but must
be called. Furthermore, the answer to this call must provide the correct an-
swer for our instance of problem A. The first of these restrictions simplifies our
considerations somewhat since it is no longer necessary to reduce the error-
or failure-probability.

For any set of polynomially equivalent decision problems and each of
the complexity classes P, ZPP, NP∩ co-NP, RP, co-RP, NP, co-NP, BPP,
and PP, it is the case that either all the problems belong to the com-
plexity class or none of them do.

Because of the second condition on polynomial reductions, not all problems
in P are polynomially equivalent. The class of decision problems that are
solvable in polynomial time is subdivided into three categories:

• all problems for which no inputs are accepted,
• all problems for which every input is accepted,
• all other problems.

The first two equivalence classes offer no help as oracle, since they answer
every query the same way, and for polynomial reductions this value cannot
be changed. For all other problems A there is an input x that is accepted and
an input y that is rejected. For a decision problem B ∈ P we can show that
B ≤p A as follows: On input z, we determine in polynomial time if z ∈ B. If
z ∈ B, then we query the oracle A about x, otherwise we query about y.

Now we return to our main theme. We have a set of problems, among them
some important problems, and we know that they are all Turing equivalent (or
perhaps even polynomially equivalent), and we don’t know a polynomial-time
algorithm for any of them. Our previous observations lead to the following
argument: We have so many different problems on which many computer
scientists have worked hard for a long time. No one has found a polynomial-
time algorithm for any of these problems. Based on the highly refined methods
for the design and analysis of algorithms, we arrive at the suspicion that
none of these problems is solvable in polynomial time. For each problem, this
conjecture is supported by the failed attempts to solve all the other problems.

The theory of NP-completeness is the successful attempt to structurally
support the conjectured algorithmic difficulty of classes of problems in view
of the complexity classes considered in Chapter 3. In Chapter 4 we saw that it
suffices to consider decision problems. The important optimization problems
are Turing equivalent to their decision variants. So we are dealing with the

5.1 Fundamental Considerations 65

complexity landscape described in Theorem 3.5.3. With the help of the fol-
lowing definition, we compare the complexity of a problem A with the most
difficult problems in a complexity class C.

Definition 5.1.1. Let A be a decision problem and C a class of decision prob-
lems.

i) A is C-hard with respect to polynomial reductions (≤p-hard for C), if
C ≤p A for every C ∈ C.

ii) A is C-easy with respect to polynomial reductions (≤p-easy for C) if
A ≤p C for some C ∈ C.

iii) A is C-equivalent with respect to polynomial reductions (≤p-equivalent for
C) if A is both C-hard and C-easy with respect to polynomial reductions.

iv) A is C-complete with respect to polynomial reductions (≤p-complete for
C), if A is ≤p-hard for C and A ∈ C.

The term “C-hard” signals that A is at least as hard as every problem in C.
In particular, A does not belong to P if C contains any problems not in P. The
counterpart of C-hard is C-easy. If A is C-easy and C contains only efficiently
solvable problems, then A is also efficiently solvable. By considering all C ∈ C
in the definition of C-hard and only one C ∈ C in the definition of C-easy, we
are implicitly comparing A to a “hardest problem” in C. The complexity class
C is thus represented (as far as its computational power is concerned) by its
hardest problems. If A is C-equivalent, then A ∈ P if and only if C ⊆ P.

Since ≤p is only a partial order on the set of decision problems, a com-
plexity class C can contain many “hardest problems” that are not comparable
with respect to polynomial reductions. But if C contains a C-complete problem
A, then the class of all C-complete problems forms an equivalence class with
respect to ≡p within the class C. This means that the C-complete problems
are all equally difficult and are the hardest among the problems in C. If we
suspect that C is not contained in P, then this is equivalent to the conjecture
that none of the C-complete problems belongs to P. A proof of the C-hardness
of a problem for a class C that is conjectured not to be contained in P is
therefore a strong indication that this problem does not belong to P. Every C-
complete problem is also C-equivalent, and by definition C-hard. Since A ≤p A
and A ∈ C, A is also C-easy.

In order to include optimization problems, and in fact all algorithmic
problems, in our considerations, we extend our definitions to these classes
of problems. For this we must use Turing reductions in place of polynomial
reductions.

Definition 5.1.2. Let A be an algorithmic problem and let C be a class of
algorithmic problems. Then the terms C-hard with respect to Turing reduc-
tions, C-easy with respect to Turing reductions, and C-equivalent with respect
to Turing reductions are defined analogously to the terms in Definition 5.1.1
by replacing polynomial reductions (≤p) with Turing reductions (≤T).

66 5 The Theory of NP-Completeness

We follow the convention that C-hard, C-easy, and C-equivalent (without
any mention of the type of reduction) will be understood to be with respect
to Turing reductions. C-completeness, on the other hand, will be understood
to be with respect to polynomial reductions. In fact, we did not even include
completeness with respect to Turing reductions in Definition 5.1.2. A signif-
icant reason for this is the investigation of decision problems L and their
complements L. All the classes we are interested in are closed under polyno-
mial reductions, but probably not all are closed under Turing reductions. In
particular, it is possible that L be C-complete (with respect to polynomial
reductions), but that L /∈ C. Many interesting classes are not known to be
closed under complement, and if a class is not closed under complement, then
Turing-completeness, while still sensible, has the funny property that the set
of all problems Turing-equivalent to a Turing-complete problem is not entirely
contained in that class. It is worth noting that if L is C-complete then L is at
least C-equivalent.

Our goal is to prove that the decision variants of many of our problems are
complete for some class C that is conjectured not to be contained in P. If the
optimization variant of a problem is Turing equivalent to its decision variant,
then it will immediately follow that the optimization problem is C-equivalent.

There are only a few decision problems that we know belong to ZPP, RP,
co-RP, or BPP, that we don’t know to be contained in P. This already makes
the study of, for example, BPP-completeness less attractive. Furthermore, we
are currently not at all sure that P �= BPP. The error-probability of BPP

algorithms can be made exponentially small, and in many cases it has been
possible to derandomize these algorithms, that is, to replace the randomized
algorithm with a deterministic algorithm that has a runtime that is only
polynomially greater than the original randomized algorithm. (See Miltersen
(2001).) So BPP is generally considered to be “at most a little bit bigger than
P”. The situation looks very different for the classes NP∩ co-NP, NP, co-NP,
and PP. No one believes that such large error- or failure-probabilities can be
derandomized. In Section 5.2 we will show that the decision variants of the
important optimization problems are contained in NP. Since we don’t believe
them to be in NP∩ co-NP, it makes sense to begin an investigation of the
complexity class NP.

As we have already discussed, the complexity classes NP∩ co-NP, NP,
co-NP, and PP have no direct algorithmic relevance, but they form the basis
for the complexity theoretical classification of problems. The decision vari-
ants of thousands of problems have been shown to be NP-complete, and their
optimization variants to be NP-equivalent. So we are in the following situation:

Thousands of important problems are NP-complete or NP-equivalent.
Either all of these problems can be solved in polynomial time and NP =
P, or none of these problems can be solved in polynomial time and
NP �= P.

5.2 Problems in NP 67

The NP �= P-problem offers a central challenge for complexity theory and
indeed for all of theoretical computer science. The Clay Mathematical Insti-
tute has included this problem in its list of the seven most important problems
connected to mathematics and offered a reward of $1,000,000 for its solution.

We do not know if NP = P or if NP �= P. Since all experts believe
with good reason that NP �= P, a proof that a problem is NP-complete,
NP-equivalent, or NP-hard is a strong indication that the problem is
not solvable in polynomial time.

5.2 Problems in NP

We want to show that the decision variants of all the problems introduced
in Section 2.2 belong to NP. To do this we must design NP algorithms, i.e.,
randomized algorithms with one-sided error where the error-probability must
only be less than 1. Said differently: The probability that x is accepted is
positive if and only if x ∈ L. These algorithms have no practical relevance,
they only serve to show that the problems considered belong to the class NP.

Theorem 5.2.1. The decision variants of all the problems introduced in Sec-
tion 2.2 belong to the class NP.

Proof. In this proof we will see that NP algorithms for many problems follow
the same outline. For an input of length n, let l(n) be the length of a potential
solution. Then the following steps are carried out:

• The first l(n) random bits are stored.
• These l(n) bits are tested to see if they describe a potential solution. If

not, the input is rejected.
• In the positive case, the solution is checked to see if it has the required

quality, and if so the input is accepted.

Clearly every input that should not be accepted will be rejected with
probability 1. If there is a solution with the required quality, then this solution
will be randomly drawn with probability at least 2−l(n) > 0, so in this case
the input is accepted. The computation time is polynomially bounded if l(n)
is polynomially bounded and testing whether a sequence of bits represents a
solution and, if so, determining its quality can both be done in polynomial
time. This is easy to show for the problems we are considering (and for many
others as well).

Traveling Salesperson Problems (TSP): A tour is a sequence of n cities
i1, . . . , in ∈ {1, . . . , n} and can be represented with n�log(n + 1)� bits. It is
possible to check in polynomial time whether {i1, . . . , in} = {1, . . . , n} (i.e.,
whether we have a tour at all), and if so it is possible in polynomial time to
compute the value of the circuit.

68 5 The Theory of NP-Completeness

Knapsack Problems: Each a ∈ {0, 1}n represents a selection of objects. In
linear time we can decide if this selection abides by the weight limit and, if
so, the utility can also be computed in linear time.

Scheduling Problems (BinPacking): We let l(n) = n�log n� and interpret
the ith block of length �log n� as the number of the bin in which we place the
ith object. We then check that no bin has been overfilled and finally determine
the number of bins used.

Covering Problems (VertexCover, EdgeCover): Each a ∈ {0, 1}n or
{0, 1}m represents a subset of the vertices or edges, respectively. It is then
easy to check if all edges or vertices are covered and to compute the number
of vertices or edges selected.

Clique Problems (Clique, IndependentSet, CliqueCover): For Clique

and IndependentSet, the procedure is similar to that for VertexCover,
this time testing if the selected set of vertices is a clique or anti-clique. For
CliqueCover the vertices are partitioned as was the case for BinPacking.
Each set in the partition is checked to see if it is a clique.

Team Building Problems (k-DM): Again, as for BinPacking, a partition
into teams is made and tested to see if each team contains exactly one member
from each of the k groups of people.

Network Flow Problems (NetworkFlow): The decision variant is in P

and, therefore, in NP.
Championship Problems (Championship): If there are m remaining games

and r possible point distributions per game, then m�log r� bits suffice to
describe any combination of outcomes. Once the outcomes of the games are
given, it is easy to decide if the selected team is league champion.

Verification problems (Sat): Each a ∈ {0, 1}n describes a truth assignment.
Even for circuits it is easy to test if a given truth assignment satisfies the
formula.

Number Theory Problems (Primes): it is easy to show that Primes ∈
co-NP. Each potential divisor j ∈ {2, . . . , n − 1} has a binary representation
of length at most �log n�. We can efficiently decide if n/j is an integer. The
randomized primality test of Solovay and Strassen even shows that Primes ∈
co-RP. In addition, it has been known for a long time that Primes ∈ NP,
although the proof of this fact is not as easy as the others we have presented
here. More recently Agrawal, Kayal, and Saxena (2002) succeeded in showing
that Primes ∈ P (see also Dietzfelbinger (2004)). ��

The decision variants of the problems we have investigated (and of
many others as well) belong to the class NP. The NP algorithms are
very efficient but, due to their high error-probabilities, algorithmically
worthless.

5.3 Alternative Characterizations of NP 69

5.3 Alternative Characterizations of NP

For randomized algorithms with a runtime bounded by a polynomial p(n),
we want to separate the generation of random bits from the actual work of
the algorithm. First, p(n) random bits are generated and stored. Then A is
“deterministically simulated” by using these stored random bits instead of
generating random bits as the algorithm goes along. Aside from the time
needed to compute p(n), this gives rise to doubling of the worst-case runtime.
That is,

When considering randomized algorithms, we can restrict our atten-
tion to algorithms that work in two phases:
• Phase 1: determination of the input length n, computation of p(n)

(for a polynomial p), generation and storage of p(n) random bits;
• Phase 2: a deterministic computation that requires at most p(n)

steps and uses one random bit per step.

In the imaginary world of nondeterministic algorithms, in the first phase
sufficiently many bits are “guessed” (nondeterministically generated), and in
the second phase they are tested to see if the guessed bits “verify” that the
input can be accepted. One refers to this as the method of “guess and verify”.
These considerations do not lead to better algorithms, but they simplify the
structural investigation of problems in NP, as we will show in two examples.

Theorem 5.3.1. Every decision problem in NP can be solved by a determin-
istic algorithm with runtime bounded by 2q(n) for some polynomial q.

Proof. Let p(n) be a polynomial that bounds the runtime of an NP algo-
rithm A for a particular problem. The random bits generated in phase 1
of the algorithm form a random sequence from {0, 1}p(n). It is easy to step
through the 2p(n) possible random bit sequences and to deterministically sim-
ulate the NP algorithm on each one in turn. The total computation time is
bounded by O

(
p(n)2p(n)

)
, which can be bounded by 2q(n) for some polyno-

mial q(n) = O (p(n)). The deterministic algorithm accepts the input if and
only if A accepts on at least one of the random sequences. By the definition
of NP, the deterministic algorithm always makes the correct decision. ��

We can also interpret the two phases of an NP algorithm as follows: An
input x of length n is extended by a 0-1 vector z of length p(n). Then the
deterministic algorithm A′ of phase 2 works on the input (x, z). This leads to
the following characterization of NP.

Theorem 5.3.2. A decision problem L is in NP if and only if there is a
decision problem L′ ∈ P such that L can be represented as

L =
{

x | ∃z ∈ {0, 1}p(|x|) : (x, z) ∈ L′
}

.

70 5 The Theory of NP-Completeness

Proof. If L ∈ NP, then we can implement the discussion preceding the state-
ment of the theorem. Assume we have a 2-phase algorithm A. The number of
random bits on an input of length n is bounded by a polynomial p(n), and
the deterministic algorithm of phase 2 accepts a language L′ ∈ P . An input
x belongs to L if and only if there is a setting z of the random bits that
causes the deterministic algorithm to accept (x, z) in the second phase. This
is precisely the desired characterization.

If L can be characterized as in the statement of the theorem, then a ran-
domized algorithm on input x can generate a random bit sequence z of length
p(|x|) and then check deterministically if (x, z) ∈ L′. If x ∈ L, then it will be
accepted with positive probability, but if x �∈ L, then it will never be accepted.

��

The NP �= P-hypothesis can now be seen in a new light. Decision problems
belong to NP if and only if they can be represented by a polynomially length-
bounded existential quantifier

(
∃z ∈ {0, 1}p(|x|)

)
and a polynomially decidable

predicate ((x, z) ∈ L′). The NP �= P-hypothesis is equivalent to the claim that
the existential quantifier enlarges the set of represented problems. This char-
acterization of NP is also known as the logical characterization of NP. Using
DeMorgan’s Laws we immediately obtain a logical characterization of co-NP

as well, namely as the class of all languages L such that

L =
{

x | ∀z ∈ {0, 1}p(|x|) : ((x, z) ∈ L′)
}

for some polynomial p and some language L′ ∈ P. The conjecture that we
cannot replace the existential quantifier in this characterization with a uni-
versal quantifier is equivalent to the statement that NP �= co-NP. The results
from Section 5.2 can also be interpreted in this light. The decision variants of
optimization problems are defined using existential quantifiers (e.g., is there a
tour?) and polynomial predicates (is the cost bounded by D?). On the other
hand, the set of prime numbers n is defined using a universal quantifier: For
all k with 2 ≤ k < n, k is not a divisor of n.

5.4 Cook’s Theorem

Now we come to the seminal result that made the theory of NP-complete-
ness for particular problems possible. We have seen through many examples
that there are polynomial reductions between very different looking problems.
Many decision variants of important optimization problems belong to NP, and
the complexity class NP can be characterized not only in terms of algorithms,
but also logically. But none of this brings us any closer to a proof that any
particular problem is NP-complete, or even that there are any NP-complete
problems. The hurdle lies in the definition of NP-completeness. To show that
a problem is NP-complete, we need to reduce every problem in NP to our

5.4 Cook’s Theorem 71

selected problem. That is, we must argue about problems about which we
know nothing other than the fact that they belong to NP. Cook (1971) and
independently Levin (1973) were able to clear this hurdle.

Here too we want to proceed algorithmically and keep the necessary re-
sources as small as possible. Let L be a decision problem in NP for which there
is an algorithm with runtime bounded by a polynomial p(n). We have seen
that the runtimes for most of the problems we are interested in (assuming
a random access machine model) have been linear or at least quasi-linear. If
we use Turing machines instead, the computation time is roughly squared,
although for Turing machines with multiple tapes the slowdown can often be
greatly reduced. Turing machines prove useful in this context because every
step has only local effects. For every step t in a computation of a q(n)-bounded
Turing machine, we can take an instantaneous snapshot of the Turing machine,
which we will call the configuration at time t. It consists of the current state,
the current contents of the tape cells, and the current location of the tape
head. So inputs x ∈ L can be characterized as follows: There are configura-
tions K0, K1, . . . , Kq(n) such that K0 is the initial configuration on input x,
Kq(n) is an accepting configuration (i.e., the current state is an accepting state
q ∈ Q+), and Ki, 1 ≤ i ≤ q(n), is a legal successor configuration of Ki−1. Ki

is a legal successor configuration of Ki−1 means that the Turing machine, for
one of the two choices of the random bit used at step i of the computation,
transforms configuration Ki−1 into Ki.

Which of the problems has such properties that we hope will simplify our
work of creating a transformation from the conditions just described into in-
stances of that problem? Whether q is the current state at time t, or whether
the tape head is at tape cell j at time t, etc., can be easily described using
Boolean variables, and we are interested in whether certain dependencies be-
tween these variables are satisfied. So we have arrived at verification problems,
and we select Sat as our target problem.

Although Turing machines work locally, for the ith configuration there are
2i + 1 possible tape head positions. In order to simplify the arguments that
follow, we will first simulate Turing machines with machines that work “even
more locally”.

Definition 5.4.1. A Turing machine is oblivious if the position of the tape
head until the time the machine halts depends only on the step t and not on
the input x.

Lemma 5.4.2. Every (deterministic or randomized) Turing machine M can
be simulated by a (deterministic or randomized, respectively) oblivious Turing
machine M ′ in such a way that t computation steps of M are simulated by
O(t2) computation steps of M ′.

Proof. The sequence of positions of the tape head of the Turing machine M ′

will be the following regardless of the Turing machine being simulated:

72 5 The Theory of NP-Completeness

0, 1, 0,−1,
−1, 0, 1, 2, 1, 0,−1,−2,
−2,−1, 0, 1, 2, 3, 2, 1, 0,−1,−2,−3, . . . ,
−(j − 1), . . . , 0, . . . , j, . . . , 0, . . . ,−j, . . .

The jth phase of the computation of M ′ will consist of 4j computation
steps and will simulate the jth step of the Turing machine M . Thus t com-
putation steps of M are simulated with

4 · (1 + 2 + · · · + t) = 2t(t + 1) = O(t2)

steps of M ′.
How does the simulating Turing machine M ′ work? How does it count the

positions? All of this is solved with a few simple tricks and by increasing the
size of the tape alphabet and the internal memory (number of states). Prior
to the tth step of M , cells −(t − 1) and t − 1 should be marked to indicate
the left and right ends of the portion of the tape being considered. This is
not possible for t = 1, but for the first step the Turing machine can call upon
its internal memory and “imagine” the two marks, both of which would mark
cell 0 at the start of the computation. In addition, we must mark the tape
position that machine M reads at step t. For step t = 1 this is again cell 0 and
this information is again stored in the internal memory. The internal memory
also keeps track of the state of machine M at each step, starting with the
initial state of M for t = 1. The simulation is now easy to describe.

Starting from position −(t − 1), M ′ moves to the right looking for the
cell that M reads at step t. This is easy to find with the help of its special
marking. At this point, M ′ knows all the information that M has during its
tth step. The state q is stored in the internal memory, and the symbol a that
M reads from the tape, M ′ can also read from the tape (in the same cell that
contains the tape head marker). If necessary, M ′ uses a random bit just like
M . Now M ′ can store the new state q′ in its memory and write the new tape
symbol a′ to the tape cell. Furthermore, M ′ knows if the tape head marker
must be moved, and if so in which direction. For a move to the right, this is
done in the next step. For a move to the left, M ′ remembers that this is still
to be done. M ′ then searches for the right end marker and moves it to the
right one cell. Then M ′ moves back to the left end marker and moves it one
space to the left. If necessary, the tape head marker is moved to the left along
the way. At this point, M ′ is ready to simulate the (t + 1)st step of M . If M
halts, then M ′ halts as well, making the same decision. ��

For our purposes, this simulation is fully adequate. If we use Turing ma-
chines with k tapes, we can use the same ideas to simulate them with obliv-
ious one-tape Turing machines (see, for example, Wegener (1987)). Now we
are prepared for Cook’s Theorem.

Theorem 5.4.3 (Cook’s Theorem). Sat is NP-complete. Thus NP = P if
and only if Sat ∈ P.

5.4 Cook’s Theorem 73

Proof. Since Sat is in NP, it is sufficient to show that every decision prob-
lem L ∈ NP can be polynomially reduced to Sat. By Lemma 5.4.2, we can
assume that the NP algorithm for L has a worst-case runtime of p(n) and
is implemented on an oblivious one-tape Turing machine. The reduction is a
transformation with connected components. The components of the Turing
machine M on input x with |x| = n consist of the states, the random bits,
and the contents of the tape. Here we use the fact that the tape-head position
is independent of x. The components are represented by Boolean variables.
To simplify notation we assume that the states are q0, . . . , qk−1, that the tape
alphabet consists of the symbols a1, . . . , am, and that am is the blank symbol.

• Q(i, t), 0 ≤ i ≤ k − 1, 0 ≤ t ≤ p(n): Q(i, t) = 1 represents that at step t,
M is in state qi. (The 0th step corresponds to the initialization.)

• Z(t), 1 ≤ t ≤ p(n), represents the value of the tth random bit.
• S(i, t), 1 ≤ i ≤ m, 0 ≤ t ≤ p(n): S(i, t) = 1 represents that at step t, the

symbol ai is being read from the tape.

All together we use (p(n) + 1) · (|Q| + 1 + |Γ |) − 1 = O (p(n)) Boolean vari-
ables.

The clauses will express the way M works in such a way that there will
be values of the random bits Z(1), . . . , Z(p(n)) for which M accepts input x
if and only if the clauses are simultaneously satisfiable. Furthermore, we need
to ensure that the variables represent things the way we are imagining. That
is, we must satisfy the following conditions.

1. The variables for t = 0 correspond to the initial configuration of the
computation.

2. The last configuration is accepting.
3. The variables represent configurations.
4. The tth configuration is the successor configuration of the (t − 1)st con-

figuration according to the instructions of the Turing machine M .

We code these conditions as a conjunction of clauses. This can be done
separately for each condition since conditions (1)–(4) are conjunctively joined.

(1) Since M starts in state q0, it must be the case that Q(0, 0) = 1 and
Q(i, 0) = 0 for all i �= 0. For each j, let t(j) be the first time that cell j is read.
For each 0 ≤ j ≤ n−1, S(i, t(j)) must have the value 1 if and only if xj+1 = ai.
(This is the only point at which the input x influences the transformation.)
For all other j, S(m, t(j)) must have the value 1, since at the beginning of the
computation the corresponding cells contain the blank symbol. Here we have
not really made any clauses, rather we have replaced some of the Boolean
variables with appropriate Boolean constants.

(2) For this we need a clause that is the disjunction of all Q(i, p(n)) for
which qi is an accepting state.

(3) At every time, the Turing machine is in exactly one state and reads
exactly one symbol. Syntactically, this is the only condition placed on config-
urations. Formally, this means that for every t ∈ {0, . . . , p(n)}, exactly one of

74 5 The Theory of NP-Completeness

the variables Q(i, t) and exactly one of the variables S(i, t) has the value 1. So
we have 2p(n)+2 conditions, of which some have already been fulfilled by our
actions under (1). Since the number of variables in each condition is |Q| or
|Γ |, and therefore O(1), we can make our lives easy. Every Boolean function
can be represented in conjunctive normal form, that is, as a conjunction of
disjunctions (clauses). The number of clauses with r variables is bounded by
2r, which in our case is O(1), since the number of variables is O(1). (In fact,
for our function “exactly one input variable has the value 1”, O(r2) clauses
suffice.)

(4) Now we must code the semantics of the Turing machine M . The tth
step of M depends on the state after the (t − 1)st step (i.e., Q(i, t − 1),
0 ≤ i ≤ k − 1), on the random bit Z(t), and on the symbol being read at
time t (i.e., S(i, t), 1 ≤ i ≤ m). This is |Q| + |Γ | + 1 = O(1) variables. The
result of this step in the computation is expressed in the new state (i.e, the
variables Q(i, t) for 0 ≤ i ≤ k − 1) and in the symbol that is written to the
tape cell (i.e., S(i, N(t)) for 1 ≤ i ≤ m, where N(t) is the next time after time
t that M once again reads the cell that is read at time t). If N(t) > p(n), then
this information is irrelevant and need not be computed. In other words, the
following |Q| + |Γ | = O(1) equations must be satisfied for 0 ≤ i ≤ k − 1 and
1 ≤ j ≤ m to guarantee that M is being simulated:

Q(i, t) = fi (Q(0, t − 1), . . . , Q(k − 1, t − 1), Z(t), S(1, t), . . . S(m, t))

and

S (j, N(t)) = gj (Q(0, t − 1), . . . , Q(k − 1, t − 1), Z(t), S(1, t), . . . , S(m, t)) .

These |Q| + |Γ | equations describe δ in our coding of states, symbols, and
random bits. So these functions don’t depend on t either. Every equation is
true only for certain assignments of the variables that occur, and can therefore
be expressed as a conjunction of O(1) clauses. (An explicit description of the
clauses can be found in Garey and Johnson (1979), but this is not needed for
our purposes.)

All together we have O(p(n)) clauses of length O(1), i.e., an instance of
Sat with total length O(p(n)). The clauses can be computed in time O(p(n)).
By first simulating all the movements of the Turing machine M for p(n)
steps, we can compute t(j) and N(t) for all t in time O(p(n)). Since the
individual functions and equations each contain only O(1) variables, they can
be converted to conjunctive normal form in time O(1).

If M accepts input x with random bits z1, . . . , zp(n), we can replace the
variables in our Sat instance with the values that they represent in the compu-
tation of M and this will satisfy all the clauses. On the other hand, if there is
an assignment for the variables that satisfies all of the clauses, then we obtain
an accepting computation of M by setting the random bits according to the
values of the variables Z(t) in the satisfying assignment. Condition (1) ensures

5.4 Cook’s Theorem 75

that M is correctly initialized. Condition (3) ensures that the variables repre-
sent a current state and a read tape symbol at every step in the computation.
Condition (4) ensures inductively that the states and tape symbols follow
the computation of M . Finally, condition (2) ensures that the computation
accepts its input. ��

Using this pioneering result it is significantly easier to prove the NP-
completeness of additional decision problems. This is because of the tran-
sitivity of ≤p. If L ∈ NP and we can show that K ≤p L for some NP-complete
problem K, then L is also NP-complete since for all L′ ∈ NP, L′ ≤p K,
and from K ≤p L it follows that L′ ≤p L for all L′ ∈ NP. Proofs of NP-
completeness will tend to get easier and easier, since the number of known
NP-complete problems is continually growing, and so we have an ever-growing
selection of problems, and it is sufficient to polynomially reduce any one of
them to a new problem to show that the new problem is NP-complete.

To prove the NP-completeness of a problem A ∈ NP it is sufficient to
reduce some NP-complete problem to A.

By the results from Chapter 4, we now know that the following problems
are all NP-complete: Sat, 3-Sat, Clique, IndependentSet, VertexCover,
DHC, HC, and TSP2,�,sym. The optimization variants of these problems are
all NP-equivalent.

6

NP-complete and NP-equivalent Problems

6.1 Fundamental Considerations

We now have the necessary tools at our disposal to prove the NP-completeness
of decision problems, and we want to consider the ten groups of problems in-
troduced in Section 2.2. In this chapter we are interested in the basic forms of
the problems and in a few related inquiries. In Chapter 7 we will discuss spe-
cial problem variants and investigate where the border between difficult (i.e.,
NP-complete) and easy (i.e., polynomial time computable) variants lies. By
the results of Section 4.2, the NP-equivalence of evaluation and optimization
variants follows from the NP-completeness of their related decision problems.
Furthermore, we know from Section 5.2 that all the decision problems we will
be considering are contained in NP. So to prove NP-completeness, it will be
sufficient to polynomially reduce some NP-complete problem to the problem
we are considering. On the one hand, we want to consider a large number
of problems, and on the other hand, we don’t want to discuss too many re-
ductions in detail. Therefore, we will only discuss in detail those proofs that
contain new ideas; for the others, we will limit ourselves to the significant
ideas.

Three of the ten groups of problems have for the purposes of this chapter
already been handled. Network flow problems are polynomially solvable. Sat

and 3-Sat have been shown to be NP-complete, and from this is follows eas-
ily that further generalization such as Satcir are also NP-complete. Finally,
VertexCover has also been shown to be NP-complete.

6.2 Traveling Salesperson Problems

We have also treated traveling salesperson problems and have shown that
the special variants HC, DHC, and TSP2,�,sym, and therefore all general-
izations of these as well, are NP-complete. Now we want to consider three
additional problems. We begin with the problem of determining whether a

78 6 NP-complete and NP-equivalent Problems

directed graph has a Hamiltonian path (directed Hamiltonian path, DHP). A
Hamiltonian path is a path that visits each vertex of the graph exactly once.
The corresponding problem for undirected graphs is called HP.

Theorem 6.2.1. DHP and HP are NP-complete.

Proof. The proof of Theorem 4.4.4 showed that 3-Sat ≤p DHC. The poly-
nomial reduction given there provides a reduction 3-Sat ≤p DHP if we omit
the two edges that reach v1,1. Analogously to the proof that DHC ≤p HC

(Theorem 4.3.1) we can show that DHP ≤p HP. ��

From the proof of Theorem 6.2.1 it even follows that it is NP-complete
to determine if there is a Hamiltonian path from a selected vertex s to a
selected vertex t. These results are not surprising, but we need them for the
following result. In an undirected, connected graph, the edges of which have
non-negative cost, a minimum spanning tree is a tree with minimum total
costs of the edges that connects all the vertices in the graph. It is known that
minimum spanning trees can be computed in time O(n2). Minimum spanning
trees have the tendency to be “star-shaped”; in particular, there are often some
vertices with high degree. If this is not desired in a particular application, one
can add a bound k on the degree of the vertices and so obtain the problem of
computing a bounded-degree minimum spanning tree (BMST).

Theorem 6.2.2. BMST is NP-complete.

Proof. Clearly, the decision variant of BMST is contained in NP. In the poly-
nomial reduction HC ≤p TSP2,�,sym, we let di,j = 1 whenever {i, j} ∈ E and
di,j = 2 otherwise. We do the same thing for the reduction HP ≤p BMST,
and add a degree bound of k = 2. A spanning tree with maximal degree 2
must be a Hamiltonian path. So a given graph has a Hamiltonian path if and
only if the corresponding weighted graph has a spanning tree with maximal
degree 2 and a cost of at most n − 1. ��

6.3 Knapsack Problems

It is always good to prove the NP-completeness of an especially restricted vari-
ant of a problem, since then the NP-completeness of all generalizations follows
immediately (provided they are in NP). A very special knapsack problem is
Knapsack∗, where ui = wi for all objects i. The decision variant – whether
the weight limit W can be fully used – is equivalent to the question of whether
there is a subset of the objects with total weight W . This is the question of
whether there is an index set I ⊆ {1, . . . , n} so that the sum of all wi, i ∈ I, is
exactly W . In this form the problem is called SubsetSum. All of the problems
we have considered so far have structures that express relationships between
the objects being considered: Edges in graphs connect two vertices; in the

6.3 Knapsack Problems 79

championship problems, teams are connected by games; and in satisfiability
problems variables may appear in more than one clause. This makes it possible
to “code in” the structures of other problems. For SubsetSum we only have
numbers and we need to express the structure of another problem using these
numbers. The main idea of the reduction consists of reserving blocks of posi-
tions in the numbers. The structures of other problems are now coded in the
same positions of different numbers. Since we form sums of numbers, we can
construct connecting structures, but we must take care that the addition does
not lead to “carries” from one block to another. This can be avoided through
the use of “receiving blocks”, more precisely blocks of positions in which all
the numbers have zeros. In the following proof, we use decimal numbers and
blocks of length 1. Receiving blocks are unnecessary since the sum of all digits
in the same position will be bounded by 5 as a result of the construction, and
so carries cannot occur.

Theorem 6.3.1. SubsetSum is NP-complete.

Proof. We describe a polynomial reduction from 3-Sat to SubsetSum. If the
3-Sat instance has m clauses c1, . . . , cm and uses n variables x1, . . . , xn, we
form 2n + 2m integers ai and bi for 1 ≤ i ≤ n, and dj and ej for 1 ≤ j ≤ m.
Each of these integers will have m + n decimal places. First we describe the
last n decimal places, which will only contain zeros and ones. The numbers
ai and bi have exactly one 1 in position i, and the numbers dj and ej have
all zeros in these positions. The desired sum value S has a 1 in each of these
positions (see Figure 6.3.1). So far it is clear that we are forced to choose for
each i exactly one of ai and bi but that for the numbers dj and ej we still
have free choice. The interpretation is now obvious: The choice of ai represents
xi = 1 and the choice of bi represents xi = 0.

We code the clauses c1, . . . , cm in the front m decimal positions of the
numbers ai and bi. One position is used for each clause. The clause cj contains
three literals and contributes a 1 to ai if xi occurs, a 1 to bi if xi occurs. If we
select a satisfying assignment and decide between ai and bi accordingly, we
will obtain in the position for cj a sum of sj , if clause cj has sj literals that
are satisfied. So the clauses are simultaneously satisfiable if there is a choice
of numbers ai and bi such that each of the first m positions of the sum is one
of the values {1, 2, 3} and each of the last n positions has the value 1. This is
still not an instance of SubsetSum since there are many sum values that are
equivalent to satisfiability of the clauses. We take care of this problem using
slack elements, namely the numbers dj and ej . We will let dj = ej , and both
numbers will have a 1 in position j and 0’s everywhere else. Finally, we let S
start with m 3’s. Now if a choice of a’s and b’s leads to a value from among
{1, 2, 3} in position j, then we can select dj and ej , just dj , or neither to force
a 3 in that position. This is not possible if cj is not satisfied. Then the sum
of the a’s and b’s will have a 0 in position j, which can be increased at most
to a value of 2 by adding dj and ej . Since we can construct all these numbers
in time O((n + m)2), we have shown that 3-Sat ≤p SubsetSum. ��

80 6 NP-complete and NP-equivalent Problems

c1 c2 c3 x1 x2 x3 x4

a1 1 0 0 1 0 0 0
a2 0 1 0 0 1 0 0
a3 1 0 0 0 0 1 0
a4 0 0 0 0 0 0 1
b1 0 1 1 1 0 0 0
b2 1 0 1 0 1 0 0
b3 0 0 1 0 0 1 0
b4 0 1 0 0 0 0 1
d1 1 0 0 0 0 0 0
d2 0 1 0 0 0 0 0
d3 0 0 1 0 0 0 0
e1 1 0 0 0 0 0 0
e2 0 1 0 0 0 0 0
e3 0 0 1 0 0 0 0

S 3 3 3 1 1 1 1

Fig. 6.3.1. An example of the reduction 3-Sat ≤p SubsetSum with c1 = x1 +x2 +
x3, c2 = x1 + x2 + x4, and c3 = x1 + x2 + x3.

Corollary 6.3.2. Knapsack and Partition are NP-complete.

Proof. Knapsack is clearly a generalization of SubsetSum. Partition, on the
other hand, is the special case of SubsetSum in which the required sum is
exactly half the sum of the numbers si. The relation SubsetSum ≤p Partition

is, nevertheless, easy to show. Let (s1, . . . , sn, S) be an instance of SubsetSum.
We can assume that 0 ≤ S ≤ S∗ := s1+· · ·+sn. We add to the set of numbers
{s1, . . . , sn} the so-called forcing components 2S∗ − S and S∗ + S. Then the
total of all the numbers is 4S∗ and we must decide if there is a subset with
sum 2S∗. Since (2S∗ − S) + (S∗ + S) = 3S∗ to form such a subset sum we
must select exactly one of 2S∗−S or S∗ +S. There is a subset I ⊆ {1, . . . , n}
such that the sum of all si for i ∈ I is S if and only if there is a subset that
together with 2S∗ − S yields a sum of 2S∗, in which case all the remaining
numbers together with S∗ + S automatically also have the sum 2S∗. ��

6.4 Partitioning and Scheduling Problems

Since the very specialized problem Partition is NP-complete, the NP-complete-
ness of all generalizations that belong to NP follows immediately. Among these
is the scheduling problem BinPacking.

Corollary 6.4.1. BinPacking is NP-complete. ��

We consider here one additional scheduling problem called SWI (sequenc-
ing with intervals) in order to present another reduction with a forcing com-
ponent. A finite set of tasks A is given, and for each task a ∈ A there is

6.5 Clique Problems 81

given a processing time l(a), an earliest time the processing can begin r(a)
(release time), and a latest time for completion of the task d(a) (deadline).
The processing of a task may not be interrupted. The problem SWI consists
in deciding whether the tasks can be performed by a processor in such a way
that all the side-conditions are met. That is, the processing intervals of length
l(a) must be placed in an appropriate order.

Theorem 6.4.2. SWI is NP-complete.

Proof. Clearly SWI belongs to NP. We describe a polynomial reduction from
Partition to SWI. Let (s1, . . . , sn) be an instance of Partition and define
S := s1 + · · ·+ sn. We generate n+1 tasks, a1, . . . , an+1. The tasks a1, . . . , an

represent the numbers s1, . . . , sn. More precisely, l(ai) = si, r(ai) = 0, and
d(ai) = S + 1. The remaining task an+1 is defined as a forcing component:
l(an+1) = 1, r(an+1) = S/2, and d(an+1) = S/2+1. Since d(an+1)−r(an+1) =
l(an+1), this task must be performed in the time interval [S/2, S/2 + 1]. The
remaining tasks with a total processing time of S must be divided among the
intervals [0, S/2] and [S/2+1, S+1]. This is possible if and only if the numbers
in the set {s1, . . . , sn} can be divided into two susbsets each with sum S/2.

��

6.5 Clique Problems

We already know that the problems Clique and IndependentSet are NP-
complete. In view of Chapter 10, we want to introduce a generalization of
Clique. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomor-
phic if they are identical up to the labeling of the vertices. Formally ex-
pressed, |V1| and |V2| must be equal, and there must be a bijection f :
V1 → V2 (a renaming of the vertices) such that {u, v} ∈ E1 if and only
if {f(u), f(v)} ∈ E2. In Chapter 10 we will investigate the graph isomor-
phism problem (GraphIsomorphism), i.e., the problem of deciding whether
two graphs are isomorphic. Here we consider the subgraph isomorphism prob-
lem (SI), where we must determine if there is a subgraph G′

1 = (V ′
1 , E′

1) of
G1 that is isomorphic to G2. A subgraph G′

1 of G1 is determined by a se-
lection of a set of vertices V ′

1 ⊆ V1. The edge set E′
1 then contains all edges

from E1 that go between vertices in V ′
1 . Clearly GraphIsomorphism ≤p SI (if

|V1| = |V2|, then G1 itself is the only subgraph that could be isomorphic to
G2), and Clique ≤p SI (choose G2 as a clique with k vertices).

Theorem 6.5.1. SI is NP-complete. ��

It remains to investigate the clique covering problem CliqueCover. This
problem will first be transformed into a more usual form. If G = (V, E) has
a clique covering V1, . . . , Vk, then the complement graph G has an anti-clique
covering V1, . . . , Vk and vice versa. By a vertex coloring of a graph G′ =

82 6 NP-complete and NP-equivalent Problems

(V ′, E′) with k colors we mean a function f : V → {1, . . . , k} (giving the
coloring of the vertices) such that any pair of adjacent vertices have different
colors (f(v1) �= f(v2) if (v1, v2) is an edge in the graph). The graph coloring
problem (GC) consists in the computing of a vertex coloring using as few
colors as possible. Clearly, vertices with the same color must form an anti-
clique. So G can be covered with k cliques if and only if the complement graph
G can be colored with k colors. So for the decision variants of these problems,
CliqueCover ≡p GC.

Theorem 6.5.2. CliqueCover and GC are NP-complete.

Proof. Based on the preceding discussion, it is sufficient to show that the NP-
complete problem 3-Sat can be polynomially reduced to GC. Let an instance
of 3-Sat be given that consists of clauses c1, . . . , cm over variables x1, . . . , xn.
We assume that every clause has exactly three literals. If necessary we can
simply repeat literals. The number of allowed colors is set to 3. As a forcing
component we form a triangle on vertices v1, v2, and v3. These three vertices
must receive different colors, and since the names of the colors don’t matter,
we will work under the assumptions that f(v1) = 1, f(v2) = 2, and f(v3) = 3.

The literals x1, x1, . . . , xn, xn will be represented by 2n vertices that have
the same names as the literals. The vertices xi, xi, and v3 are connected
as a triangle. This forces the coloring f(xi) = 1 and f(xi) = 2 with the
interpretation that xi = 1 or the coloring f(xi) = 2 and f(xi) = 1 with
the interpretation that xi = 0. This makes the connection between variable
assignments and vertex colorings. Now components representing the clauses
must be constructed so that 3-colorings correspond to satisfying assignments.
The component for the clause cj = zj,1 + zj,2 + zj,3 is shown in Figure 6.5.1.
Note that the vertices zj,1, zj,2, and zj,3 are vertices for the literals and that
v2 and v3 belong to the forcing triangle.

cj,1

zj,1

zj,2

zj,3

cj,2

cj,6

v3

v2

cj,5

cj,3 cj,4

Fig. 6.5.1. The clause component in the polynomial reduction 3-Sat ≤p GC.

Since f(v2) = 2 and f(v3) = 3, it follows that f(cj,6) = 1. Furthermore,
zj,1, zj,2, and zj,3 are not colored with 3. The following property, which can
be easily verified by clever experimentation, shows that these components
have constructed the desired connection between satisfying assignments and
3-colorings.

6.6 Team Building Problems 83

• Let f(v2) = 2 and f(v3) = 3. The cj-component can be colored with three
colors if and only if at least one of the vertices zj,1, zj,2, and zj,3 is colored
with 1.

The components for each clause cj were made using different vertices cj,l. All
together we have 2n + 6m + 3 vertices and 3n + 12m + 3 edges that can be
constructed in linear time.

If a ∈ {0, 1}n is a satisfying assignment, we can color the vertices
v1, v2, v3, xi, xi, cj,6, 1 ≤ i ≤ n, 1 ≤ j ≤ m as just described. Since cj is
satisfied, at least one of the vertices zj,1, zj,2, zj,3 receives the color 1, and the
clause component can be legally colored. On the other hand, for any legal
coloring we can assume that f(v1) = 1, f(v2) = 2, and f(v3) = 3. This forces
f(cj,6) = 1. As shown above, f(zj,l) = 1 for at least one l ∈ {1, 2, 3}. Further-
more, the coloring corresponds to a variable assignment as described above.
This assignment has the property that zj,l has the value 1 if f(zj,l) = 1, so
all the clauses are satisfied. ��

In the proof of Theorem 6.5.2 we used a fixed value of 3 for the number
of colors. We will use k-GC to denote the special case of GC in which the
number of colors is fixed at k. So we have shown the following corollary.

Corollary 6.5.3. 3-GC is NP-complete. ��

6.6 Team Building Problems

Now we present just a sketch of the proof that 3-DM is NP-complete.

Theorem 6.6.1. 3-DM is NP-complete.

Proof. It is sufficient to show that 3-Sat is polynomially reducible to 3-
DM. We start again with m clauses c1, . . . , cm each with three literals over
x1, . . . , xn. We construct an instance of 3-DM with three groups of experts,
each of which has 6m people. The first group is subdivided into n subgroups,
one for each variable. If there are zi clauses that contain either the literal xi or
the literal xi, then exactly 2zi people belong to the subgroup for xi: zi people
xl

i (1 ≤ l ≤ zi) for the assignment xi = 1, and zi people xl
i (1 ≤ l ≤ zi) for

xi = 0. A selection component for xi is designed to force that the teams must
be formed in such a way that all the people for xi = 0 or all the people for
xi = 1 must remain unassigned to teams. To achieve this we assign zi people
from group 2 and zi people from group 3 to potential teams in the manner
described in Figure 6.6.1 for zi = 4. In the figure, teams are indicated by
triangles, the people in group 2 are a1, . . . , a4, and the people in group three
are b1, . . . , b4.

Since a1, . . . , a4, b1, . . . , b4 do not appear in any other team, there are only
two ways to place them all in teams. Either we choose T1, T3, T5, and T7

84 6 NP-complete and NP-equivalent Problems

T5

x1
i

a3b3

a4

x4
i

T7

T1

x3
i

x4
i

x1
i

a1 b1

b4 a2

b2

x2
i

x3
i

x2
i

T8 T2

T3

T6 T4

Fig. 6.6.1. A selection component from the reduction 3-Sat ≤p 3-DM.

with the interpretation that xi = 0, or we choose T2, T4, T6, and T8 with the
interpretation that xi = 1. It is also clear from Figure 6.6.1 that this method
would not work if we had only two groups of experts.

For the jth clause cj , we have a person p2
j in group 2 and a person p3

j

in group 3. These two people can only be in a team together, and need a
third member from group 1, which is intended to represent the satisfaction
of one of the literals occurring in cj . If the literal xi occurs in cj , then there
is a team (xl

i, p
2
j , p

3
j). There are enough people for each literal so that each

xl
i (or xl

i) only occurs in one team. Finally, there are people q2
j and q3

j for
1 ≤ j ≤ 2m, designed to form teams with the remaining people of group 1.
These people are very flexible, and all triples (xl

i, q
2
j , q3

j) and (xl
i, q

2
j , q3

j) form
potential teams.

Satisfying assignments lead to a formation of teams such that the selection
components do not integrate the people representing the satisfied literals. So
p2

j and p3
j find a third team member and then teams are formed with q1

j and

q2
j . On the other hand, any formation of teams on the selection components

can be translated into a variable assignment. If all p2
j and p3

j belong to teams,
then the variable assignment is satisfying. ��

6.7 Championship Problems 85

An important generalization of 3-DM is the set cover problem, SetCover,
in which a set S, a number k and a sequence A1, . . . , An of subsets of S are
given and we must decide whether S is the union of k of the subsets Ai.
An important application area is the minimization of depth-2 circuits. If we
let S be the set of all people in an instance of 3-DM, and form a 3-element
subset of S for each potential team, then we obtain a polynomial reduction
3-DM ≤p SetCover. That is,

Corollary 6.6.2. SetCover is NP-complete. ��

6.7 Championship Problems

We have already seen that the championship problem with the (0, 1, 2)-
partition rule can be solved in polynomial time. With the introduction of the
(0, 1, 3)-partition rule in the mid-1990’s, the complexity theoretic investiga-
tion of this problem became interesting. The complexity of the championship
problem changes dramatically with this new point rule.

Theorem 6.7.1. The championship problem with the (0,1,3)-partition rule is
NP-complete.

Proof. Once again we will use 3-Sat as the starting point for our reduction.
For the championship problem we will use another representation. We let the
selected team win all its games and temporarily let all other games end in
a tie. The other teams will be represented by vertices and labeled with a
number z ∈ Z indicating that after these temporarily assigned outcomes the
team has z more points than the selected team. The games that remain to be
played are represented by edges between the opposing teams. The question
is now whether the temporarily assigned outcomes can be modified in such
a way that all vertices are labeled with non-positive values. At each edge,
the outcome may be changed once. The effect is that one team receives two
additional points, and the other team loses a point, since a 1:1 tie is converted
into a 3:0 victory for one team.

Now let an instance of 3-Sat be given, i.e., clauses c1, . . . , cm over variables
x1, . . . , xn. We begin with the construction of variable components that are
to reflect the assignment xi = 0 or xi = 1. Variables that do not occur will
be ignored. For all other variables xi, we form a binary tree in which the
left subtree has as many leaves as there are occurrences of xi in c1, . . . , cm.
Similarly the right subtree will have as many leaves as there are occurrences
of xi. The root is labeled +1, the leaves are labeled −2, and the other vertices
are labeled 0. Figure 6.7.1 shows an example.

Only the teams at the leaves will play additional games. In order to achieve
a non-positive label, the root team must lose the game to one of its two
children, and we will interpret a loss to the left child as xi = 0 and a loss to
the right child as xi = 1. If the root loses to its right child, then the child

86 6 NP-complete and NP-equivalent Problems

−2

0 0

0 0

0

+1

−2 −2

−2−2

−2

−2−2

0

Fig. 6.7.1. A variable component from the reduction 3-Sat ≤p (0, 1, 3) −
Championship. In this example xi occurs positively in three clauses and negatively
in five clauses.

receives a value of +2, and must therefore lose to both of its children, This
domino effect continues down to the leaves, which obtain the value 0. At this
point, only the leaves in the left subtree (which represents xi = 1) can still
gain points. The construction of the clause components and the connections
to the variable components are now obvious. The clause components consist
of a single node (team) labeled +1. This team has three games to play, one
for each of its literals. If the clause contains the literal xi, then the team
must play one of the leaves of the xi component in the subtree representing
xi = 1. Of course, this is done in such a way that each leaf must play exactly
one more game. This completes the construction of an instance of (0, 1, 3)-
Championship. We have O(m) teams and O(m) games. The construction can
be carried out in time O(m).

From a satisfying assignment a for all of the clauses, we obtain the fol-
lowing modifications to the temporarily assigned game outcomes which result
in the selected team becoming league champion. The roots of the variable
components start the domino effect that corresponds to their assigned value.
Then, for each clause component there is still one game against a team that
represents a satisfied literal and can therefore receive two additional points.
This game is lost by the team representing the clause. On the other hand,
game outcomes that produce a championship for the selected team must use
at least one of the two subtrees of each variable component in order to reduce
the excess points at the root. We interpret this as the variable assignment.

6.7 Championship Problems 87

The assignment must satisfy all the clauses since otherwise a clause compo-
nent cannot reduce its excess points. ��

From this example we see that problems that do not belong to the typical
repertoire of combinatoric optimization but come from decisions made by
soccer functionaries can also be handled using the means of complexity theory.

Many very different-looking problems with direct or at least indi-
rect connections to real applications prove to be NP-complete or NP-
equivalent. The proofs for NP-completeness use special features of the
problems being considered but otherwise follow a common outline. One
can therefore hope that proofs of NP-completeness for new problems
can be obtained “almost routinely”. Of the problems we have consid-
ered so far, only the graph isomorphism problem GraphIsomorphism

cannot be assigned one of the two categories “polynomially solvable”
and “ NP-equivalent”.

7

The Complexity Analysis of Problems

7.1 The Dividing Line Between Easy and Hard Versions

of a Problem

We now return to the families of problems introduced in Section 2.2. We will
use these examples to investigate just where the dividing line between easy
and hard problems runs. To do this we will compare similar-looking problems
such as the two covering problems VertexCover and EdgeCover, and we will
restrict the set of inputs of general problems like GC in various ways. Claims
that particular problems are efficiently solvable will for the most part be
omitted. Such proofs can be found in textbooks covering efficient algorithms.
We will also omit some of the NP-completeness proofs.

All the variants of the traveling salesperson problem TSP that we have
considered are NP-equivalent. The results of Section 6.2 have interesting im-
plications for two other families of problems. While the problem of computing
a minimum spanning tree can be done efficiently by means of Kruskal’s algo-
rithm, this problem becomes NP-equivalent if we place a bound on the degrees
of the vertices in the desired spanning tree. Similarly, finding the shortest path
from s to t can be done efficiently using Dijkstra’s algorithm, but finding the
longest cycle-free path from s to t is NP-equivalent. The hardness of the latter
problems follows from the NP-completeness of the directed Hamiltonian path
problem DHP.

SubsetSum and Partition are very specialized knapsack and partitioning
problems that are hard. The hardness of these problems carries over to all
more general variants of these problems. The class of scheduling problems has
an especially rich structure. Various combinations of such parameters as the
number of available processors, the speed of the processors, the suitability
of the processors for specific tasks, the earliest start times for processing the
tasks, the latest completion times, restrictions on the order in which tasks
must be completed, or the option to interrupt tasks lead to an abundance
of problems of differing complexity. Results about scheduling problems can

90 7 The Complexity Analysis of Problems

be found in Lawler, Lenstra, Rinnooy Kan, and Shmoys (1993), and Pinedo
(1995).

We have seen that the team building problem 2-DM is solvable in polyno-
mial time, but that 3-DM (and therefore the problems k-DM for all k ≥ 3) is
NP-complete. With the help of an algorithm for 2-DM we can solve the edge
covering problem EdgeCover, but the vertex covering problem VertexCover

is NP-complete.
Of the satisfiability problems, k-Sat is NP-complete if k ≥ 3, and Max-k-Sat

is NP-complete for k ≥ 2. For Max-k-Sat we need to decide if at least l
of the m clauses can be simultaneously satisfied, where l is a part of the
input. So k-Sat is just the special case that l = m, from which it follows
that Max-k-Sat is NP-complete for k ≥ 3. The proof that Max-2-Sat is also
NP-complete will not be given here, but this result has implications for the
optimization of pseudo-Boolean functions f : {0, 1}n → R. Clauses can be
“arithmetized” as follows: a disjunction of literals z1 +z2 + · · ·+zk is replaced
by 1 − (1 − z1)(1 − z2) · · · (1 − zk) and x̄i is replaced by 1 − xi. If we add
the “values” of all the resulting clauses we get a pseudo-Boolean polynomial
f : {0, 1}n → R with the properties that f(a) is the number of clauses satisfied
by the assignment a and the degree of f is bounded by the maximum number
of literals occurring in a single clause. From the NP-completeness of the deci-
sion variant of Max-2-Sat it follows that the decision variant of the problem
of maximizing a pseudo-Boolean polynomial of degree 2 is also NP-complete.
Surprisingly, 2-Sat is solvable in polynomial time. To see this we transform an
instance of 2-Sat into a directed graph on the vertices x1, x1, x2, x2, . . . xn, xn.
Each clause z1 + z2 gives rise to a pair of edges (z1, z2) and (z2, z1), which
represent the implications “z1 = 0 =⇒ z2 = 1” and “z2 = 0 =⇒ z1 = 1”. All
of the clauses can be simultaneously satisfied if and only if there is no variable
xi such that there are paths both from xi to xi and also from xi to xi in the
resulting graph.

Vertex coloring problems have very special hard subproblems. 3-GC is NP-
complete, and therefore k-GC is NP-complete for any k ≥ 3. To show that
3-GC ≤p k-GC, we add to the given graph k− 3 additional vertices which are
connected to each other and to each vertex in the original graph. These new
vertices will then require k − 3 colors, and none of these colors may be used
for any of the original vertices. A greedy algorithm solves 2-GC in polynomial
time. We take note of two further restrictions:

• k-d-GC is the restriction of k-GC to graphs with vertex degree at most d.
• k-GCpl is the restriction of k-GC to planar graphs, i.e., to graphs that can

be embedded in the plane without necessitating crossing edges.

The problem k-d-GCpl results from applying both of the above restrictions
at once. Now we get some problems that are trivial in the sense that in their
decision variants all inputs are accepted. This is the case for k-d-GC when
k > d, since regardless of how the at most d neighbors of a vertex have been
colored, there will always be a color remaining for the vertex itself. Since the

7.1 The Dividing Line Between Easy and Hard 91

famous “Four Coloring Problem” has been solved, we know that every planar
graph is 4-colorable. Therefore, k-GCpl is trivial for k ≥ 4 and, as we have
previously seen, polynomial time decidable for k ≤ 2. In contrast, the very
special problem 3-4-GCpl is NP-complete. This is the problem of deciding if a
planar graph with maximal degree 4 is 3-colorable. This last claim follows by
composing two polynomial reductions each using local replacement showing
that 3-GC ≤p 3-GCpl ≤p 3-4-GCpl.

We begin with an instance G of 3-GC and an embedding of G in the
plane with crossings. Figure 7.1.1 indicates how we replace an edge with three
crossings. The subgraph P is the planar graph shown in Figure 7.1.2 with
four outer vertices A, B, C, and D. A little experimenting easily shows the
following:

• In every 3-coloring of P , A and C have the same color, and B and D have
the same color.

• Every coloring f of A, B, C, and D with f(A) = f(C) and f(B) = f(D)
can be extended to a 3-coloring of P .

vPPu u u′v P

Fig. 7.1.1. Dealing with intersecting edges in 3-GC ≤p 3-GCpl.

This construction guarantees that in Figure 7.1.1 the vertices u and u′

receive the same color, so u and v must receive different colors. On the other
hand, every coloring of the nonplanar graph can be translated into a coloring
of the planar graph.

In the next step a vertex v with degree d > 4 is replaced with a planar
graph Hd with d “outer” vertices with degree at most 2, and “inner” vertices
with degree at most 4. In addition, this graph will be 3-colorable if and only
if the outer vertices all have the same color. Then the d edges incident to
v can be distributed among the d outer vertices of the graph representing v
without changing the colorability properties. The construction is described in
Figure 7.1.3 for d = 6. Since the vertices 1, 2, and 3 in H∗ have degree 2, two
copies of H∗ can be fused at those vertices without increasing the degree of
any vertex beyond 4.

Finally, we handle the championship problem with n teams. With the a-
point rule, this problem is polynomial-time solvable. On the other hand, with
the (0, 1, 3)-point rule, the problem becomes NP-complete. This result can be

92 7 The Complexity Analysis of Problems

A

D

B

C

Fig. 7.1.2. The planar graph P .

7

H6

H∗ H∗H∗ H∗

v2 v3 v5

v1 v6

1

2

34 5

6 8
H∗

v4

Fig. 7.1.3. The replacement of a vertex with degree 6 by a planar graph with
maximal degree 4.

generalized to the (0, 1, b)-point rule for any b ∈ Q with b > 1 and b �= 2. In
this case, for example, the (0, 1, 3/2)-point rule can be better interpreted as
the (0, 2, 3)-point rule, to which it is equivalent. Actual championship prob-
lems are more specific than the problems we have dealt with so far. Often
leagues are scheduled in rounds in which each team plays exactly one game.
(0, 1, 3)-Championship is still NP-complete for three remaining rounds, but
polynomial-time solvable for two remaining rounds. It is not clear, however,
if the given standings can actually be achieved in a league where each team
plays each other twice (once at home and once away). In addition, the German
Soccer League (Fußball Bundesliga), for example, uses a prescribed scheduling
scheme that has strong “locality properties”. Under these conditions, (0, 1, 3)-

Championship is polynomial-time solvable for O(log1/2 n) remaining rounds.

7.2 Pseudo-polynomial Algorithms and Strong NP-completeness 93

Whether this problem is actually polynomial-time solvable for any number of
remaining rounds is an open problem.

For NP-complete and NP-equivalent problems, it is worth considering
whether one only needs an algorithm for a specialized problem variant,
and if so to investigate the complexity of this specialized problem. We
have used examples to show that the dividing line between easy and
difficult problems can follow a surprising course.

7.2 Pseudo-polynomial Algorithms and Strong

NP-completeness

In Section 7.1 we did not handle an important possibility for restricting prob-
lems, namely to restrict the size of the numbers that occur in the instances.
We consider here only natural numbers. Inputs with bit length n can contain
numbers that are exponentially large with respect to n. On the other hand,
most applications only require numbers of moderate size.

We are interested here in problems in which numbers that are not bounded
by a polynomial in the input length are still meaningful. For the decision vari-
ant of the clique problem we ask about the existence of a clique of size k, where
k is a parameter of the input. In principal, k can be any natural number. But
the only meaningful values of k are in {2, . . . , n} since all graphs have cliques
of size 1 and no graphs have cliques of size k > n. So Clique is not of inter-
est in this discussion. The same is true for all variants of the clique problem,
for covering problems, team building problems, and verification problems. On
the other hand, traveling salesperson problems, knapsack problems, partition
problems, network flow problems, championship problems, and number theory
problems of the sort for which the numbers that occur may meaningfully take
on values that are not bounded by a polynomial in the length of the input,
are in principle still meaningful. They are called large number problems.

For difficult problems (e.g., NP-equivalent problems) we pose the question:
Are these problems still difficult if the numbers that occur are polynomially
bounded in the length of the input? Number theory problems are a special
case. An instance of Primes, for example, consists of exactly one number repre-
sented in binary. The value of this number is always exponential in the length
of its binary representation. Thus it is not possible to polynomially restrict the
size of the numbers that occur in instances of Primes. This situation is differ-
ent for the other problems mentioned above. Because of the great importance
of problems restricted to small numbers, large number problems that remain
difficult when restricted in this way have received a special designation.

Definition 7.2.1. A large number decision problem A is called NP-complete
in the strong sense (or, more briefly, strongly NP-complete) if there is a poly-
nomial p(n) such that the problem is NP-complete when restricted to instances

94 7 The Complexity Analysis of Problems

where all the numbers that occur are elements of N whose values are bounded
by p(n), where n is the length of the instance.

Theorem 7.2.2. The traveling salesperson problem TSP and the champi-
onship problem Championship with the (0, 1, a)-point rule are strongly NP-
complete.

Proof. We already know that TSP is NP-complete even when the distances
are only allowed to take on values from the set {1, 2}. The largest number
that occurs is then n, the name of the last city.

Championship is NP-complete with the (0, 1, 3)-point rule, and so the num-
bers in the instance are bounded by the number of teams, the number of games
that remain to be played, and the current scores. In our reduction of 3-Sat to
(0, 1, 3)-Championship in the proof of Theorem 6.7.1, no team plays more than
three additional games, so the largest point difference that can be made up
is 9 points. Thus (0, 1, 3)-Championship remains NP-complete when restricted
to small numbers. ��

Under the assumption that NP �= P, the notion “strong NP-completeness”
can complexity theoretically distinguish among NP-complete problems.

Theorem 7.2.3. If NP �= P, then Knapsack is not strongly NP-complete.

Proof. The claim will be proved by giving an algorithm for Knapsack that for
polynomially bounded weight values runs in polynomial time. The algorithm
uses the method of dynamic programming. Consider an instance of Knapsack

with n objects and weight limit W . We will let KP(k, w) (for 1 ≤ k ≤ n
and 0 ≤ w ≤ W) denote the modified instance in which only the first k
objects are considered and the weight limit is w. Let U(k, w) be the largest
utility that can be achieved for the instance KP(k, w), and let D(k, w) be the
decision for an optimal packing of the knapsack whether we pack object k
(D(k, w) = 1) or do not pack object k (D(k, w) = 0). In addition, we give
reasonable values for extreme values of the parameters: U(k, w) = −∞, if
w < 0; and U(0, w) = U(k, 0) = D(k, 0) = 0, if w ≥ 0.

The algorithm now fills out a table row by row with the values
(U(k, g), D(k, g)). If we are considering KP(k, w), we can pack object k, win-
ning a utility of uk, and reduce the weight limit for the remaining objects to
w − wk (it is possible that w − wk < 0). So we must consider the problem
KP(k − 1, w − wk). If we decide not to pack object k, then we must consider
KP(k − 1, w). So

U(k, w) = max{U(k − 1, w), U(k − 1, w − wk) + uk} .

Furthermore, we can set D(k, w) = 1 if U(k − 1, w −wk) + uk ≥ U(k − 1, w),
and D(k, g) = 0 otherwise. The computation of (U(k, w), D(k, w)) can be done
in time O(1). The entire runtime amounts to O(n · W) and is polynomially
bounded if W is polynomially bounded in n. ��

7.2 Pseudo-polynomial Algorithms and Strong NP-completeness 95

We call an algorithm for a large number problem pseudo-polynomial if for
every polynomial p(n) the algorithm runs in polynomial time on all inputs
in which all numbers are natural numbers with size bounded by p(n). Under
the assumption that NP �= P, a pseudo-polynomial algorithm implies that a
problem is not strongly NP-complete. From an algorithmic point of view, this
can be expressed as follows:

If NP �= P, then problems that are strongly NP-complete do not even
have pseudo-polynomial algorithms.

From this vantage point, it is worth taking another look at the proof of
Theorem 6.3.1, i.e., at the proof that the special knapsack problem SubsetSum

is NP-complete. For the reduction of 3-Sat to SubsetSum for instances of 3-Sat

with inputs with m clauses and n variables we formed instances of SubsetSum

with decimal length n+m. These are enormous numbers. A polynomial reduc-
tion that used only numbers with size bounded by some polynomial p(n, m)
would imply that NP = P since by Theorem 7.2.3, SubsetSum is polynomially
solvable when restricted to small numbers.

BinPacking is NP-complete even when restricted to two bins, but is pseudo-
polynomially solvable using the pseudo-polynomial algorithm for SubsetSum.
Somewhat more generally it can be shown that bin packing problems with
a fixed number of bins are pseudo-polynomially solvable, and therefore not
strongly NP-complete unless NP = P. Now we consider the other extreme
case of bin packing. Suppose there are n = 3k objects, k bins of size b, and
that the sizes of the objects a1, . . . , an are such that b/4 < ai < b/2 and
a1 + · · ·+ an = k · b. This means that any two objects fit into a bin, but more
than three never do. Now we must decide if the objects can be packed into
k bins. If so, then each of the k bins contains exactly three objects, so this
problem is called 3-Partition. In contrast to the bin packing problems with
few bins and many objects per bin, this problem with many bins and at most
three objects per bin is strongly NP-complete.

Theorem 7.2.4. 3-Partition is strongly NP-complete. ��

We will omit the technically involved proof (see Garey and Johnson
(1979)), in which 3-DM is first reduced to 4-Partition with polynomially
large numbers and then this problem is reduced to 3-Partition with poly-
nomially large numbers. The problem 4-Partition is defined analogously to
3-Partition with b/5 < ai < b/3 and n = 4k. Both polynomial reductions are
interesting since in each case information is coded into numbers, as was the
case in the proof that 3-Sat ≤p SubsetSum. The problem 3-Partition plays
an important role as a starting point in proving that many other problems
are strongly NP-complete. We will demonstrate this using BinPacking and
the scheduling problem SWI (sequencing with intervals) as examples.

96 7 The Complexity Analysis of Problems

Theorem 7.2.5. BinPacking and SWI are strongly NP-complete.

Proof. The claim for BinPacking is clear, since 3-Partition is a special case
of BinPacking. To prove the claim for SWI, we first describe a polynomial
reduction from 3-Partition to SWI and then discuss the size of the numbers
used in the reduction. An instance of 3-Partition consists of numbers n = 3k,
b, and a1, . . . , an such that b/4 < ai < b/2 and a1 + · · ·+ an = k · b. From this
we construct an instance of SWI with n tasks A1, . . . , An which represent the
n objects of the instance of 3-Partition, and k−1 forcing tasks F1, . . . , Fk−1.
The tasks Ai may be started immediately (r(Ai) = 0), their duration reflects
the size of the corresponding objects (l(Ai) = ai), and they must be completed
by time d(Ai) = kb+k−1. The forcing tasks are defined by r(Fi) = ib+ i−1,
l(Fi) = 1, and d(Fi) = ib + i. The time of their processing is forced, together
they require k − 1 time, and they force the tasks A1, . . . , An to be completed
within k blocks of length b. So there is a packing of the n objects into the
k bins if and only if the n + k − 1 tasks can be completed by one processor
subject to the side conditions.

The largest number that appears in the instance for SWI is kb + k − 1. If
the numbers in the input for 3-Partition are bounded by a polynomial p(n),
then b ≤ p(n) and kb + k − 1 ≤ k · (p(n) + 1). So the strong NP-completeness
of SWI follows from the strong NP-completeness of 3-Partition. ��

7.3 An Overview of the NP-completeness Proofs

Considered

In the course of the last four chapters we have encountered many reductions,
most of which have been polynomial reductions that have been used to prove
the NP-completeness or even the strong NP-completeness of the decision vari-
ants of important problems. These results are summarized in Figure 7.3.1.
Here we use NP(p(n)) to denote all decision problems that can be decided
in nondeterministic time O(p(n)) by an oblivious Turing machine with one
tape. Strongly NP-complete problems with large numbers are boxed. Poly-
nomial reductions are represented by downward arrows. Next to the arrows
we give the resources required by the reduction: first the computation time
and then the size of the instance constructed by the reduction. For clarity we
have omitted the O(·) in each case. So, for example, our reduction of 3-Sat

to DHC applied to a Boolean formula with n variables in m clauses runs in
time O(n + m) and produces an instance of DHC with O(n + m) vertices and
O(n+m) edges. For Sat, l refers to the length of the input. We have also used
some additional abbreviations: CP for Championship, VC for VertexCover,
SC for SetCover, and KP for Knapsack.

Figure 7.3.1 shows only a tiny piece of the much larger picture of known NP-
completeness proofs. This diagram represents only those problems that have

7.3 An Overview of the NP-completeness Proofs Considered 97

n2, n

DHP

3-GC

n2, n

BMST

3-DM SubsetSum

4-Partition

3-Partition

SWI BinPacking

n, nn, n

DHC

HC

TSP2,�,sym

n2, n

TSP� TSPsym TSP

k-Sat, k ≥ 3

n + m,

3-4-GCpl

(n + m, n + m)

3-GCplk-GC,
k ≥ 3

MAX-k-Sat,
k ≥ 3

TSPN

l, l

Clique

VC

IndependentSet

l, l

l, l
n + m,

n + m,

n + m, n + m,

n + m,

(n + m)2,

n2,n + m,

3-Sat

Sat

NP(p(n))

(n + m, n + m) (m, m2)

m2,

n + m

(n + m, n + m)

(n, n + m)

(n + m, n + m) (n + m, n + m) n + m

Partition

(n + m, m)

(n2, n2) (n, n2)

n, nn, n

n + m,

(n, m)

(0,1,3)-CPn + m,

(n, m)

p(n)2,
`
p(n)2, p(n)2

´

(0,1,3)-CP

3 rounds

n2,

(n + m, m)

KP

n + m, n + m,

SC

n, (n, n)

HP

Fig. 7.3.1. An overview of NP-complete and strongly NP-complete problems.

been discussed here. The full picture of what is known about NP-completeness
would be practically impossible to make: it would fill a large book by itself and
we can safely assume that it would require updating nearly every day. Thus
it was rather an understatement when we spoke in Chapter 1 of thousands of
NP-complete problems.

The full picture of NP-complete and NP-equivalent problems is im-
mense. The NP �= P-problem is a great intellectual challenge with far-
reaching consequences.

8

The Complexity of Approximation Problems –

Classical Results

8.1 Complexity Classes

To this point we have understood optimization as a sharply defined criterion:
Only the computation of a provably optimal solution counts as success, ev-
erything else is a failure. In cases where we can compute exact solutions to
optimization problems, we should do so. But many optimization problems are
NP-equivalent. For these problems, if we could efficiently compute solutions
with values that are guaranteed to be at least close to the optimal value, this
would be a good way out of the (conjectured) NP �= P-dilemma. This is espe-
cially true for problems from real applications where the parameters are based
on estimates, since exact optimization under these conditions is a fiction.

For a decision problem A we will use Max-A or Min-A to denote the related
optimization problem. We are interested in optimization problems such that
for each instance x there is a non-empty set S(x) of solutions and each solution
s ∈ S(x) has a positive value v(x, s) with respect to x. These conditions are
met by the optimization problems we have encountered with the exception
that sometimes solutions have a value of 0, for example an empty set of nodes
for Clique or VertexCover representing a graph with no edges. In the first
case we can simply remove the empty set from the set of solutions S(x), since
there is always a trivial solution that is better, namely a clique of size 1. In the
second case we can exclude graphs with no edges from consideration without
significantly altering the problem. We insist that v(x, s) > 0 so that we can
divide by v(x, s).

Our goal is to compute good solutions s ∈ S(x) and their values v(x, s)
in polynomial time. So we will require that for some polynomial p, the length
of every solution s ∈ S(x) and its value v(x, s) be bounded by p(|x|). For
most problems the values of the solutions will be integers; one exception is
the traveling salesperson problem Min-TSPd-Euclid. Finally, we must decide if
we are interested in a solution with as large a value as possible (maximization
problems) or in a solution with as small a value as possible (minimization
problems). The goodness of a solution s ∈ S(x) should measure “how close”

100 8 The Complexity of Approximation Problems – Classical Results

the value of the solution v(x, s) is to the value of an optimal solution vopt(x)
for the instance x. This idea is well-motivated, but it also has the problem
that the definition contains the unknown value vopt(x). If we could compute
vopt(x) efficiently, then the underlying evaluation problem would be solvable
in polynomial time. As we saw in Section 4.2, for most problems this implies
that the optimization problem itself is solvable in polynomial time. So we will
be forced to estimate vopt(x).

But first we want to formalize how we will measure the “closeness”
of v(x, s) to vopt(x). The most obvious idea is to consider the difference
vopt(x)−v(x, s), or its absolute value. But in many cases this is inappropriate.
A difference of 10 between a computed solution and an optimal solution for
Min-BinPacking is awful if 18 bins suffice, but it is respectable when 1800
bins are needed. For Min-TSP the problem is changed formally, but not sub-
stantially, when we express the distances in meters instead of kilometers. The
same is true if we express the utility of objects in the knapsack problem using
monetary units and switch from dollars to cents. In both cases the differ-
ence vopt(x)−v(x, s) would increase by a constant factor. That this difference
should provide a good measure of the goodness of a solution is the exception
rather than the rule. So instead we will use the usual measure of goodness,
namely the ratio of vopt(x) to v(x, s). The difficulties discussed above in our
consideration of vopt(x) − v(x, s) do not arise. We follow the tradition of us-
ing the quotient vopt(x)/v(x, s) for maximization problems and the quotient
v(x, s)/vopt(x) for minimization problems. This ensures that we obtain uni-
form values of goodness that always have a value of at least 1. But we have
to accept that better solutions have a smaller goodness than worse solutions.
This definition is always used for minimization problems. For maximization
problems, the quotient v(x, s)/vopt(x) can also be found in the literature.

Definition 8.1.1. For optimization problems the approximation ratio r(x, s)
for a solution s for instance x is defined by

• vopt(x)/v(x, s) for maximization problems, and
• v(x, s)/vopt(x) for minimization problems.

For an optimization algorithm A we expect that for each instance x a
solution sA(x) is computed, which will then have an approximation ratio of
rA(x) := r(x, sA(x)). For ε := εA(x) := rA(x) − 1, such a solution is called
ε-optimal. For minimization problems the value of the computed solution is
100 · ε % above the optimal value, and for maximization problem the optimal
value is 100 · ε % larger than the value of the computed solution, the value of
which is 100 · (ε/(1 + ε)) % smaller than the optimal value. Just as we do not
consider the computation time tA(x) of an algorithm for each input, instead
of rA(x) we will investigate the worst-case approximation ratio

rA(n) := sup {rA(x) : |x| ≤ n} .

8.1 Complexity Classes 101

Sometimes the worst-case approximation ratio is not the best measure. For
example, in Section 8.2 an efficient approximation algorithm A for BinPacking

is presented for which

v(x, sA(x)) ≤
11

9
· vopt(x) + 4 .

Thus

rA(x) ≤
11

9
+

4

vopt(x)
.

Since vopt(x) ≥ 1, it follows that rA(n) ≤ 47/9. Since we can efficiently rec-
ognize instances where all the objects fit into a single bin, we only need the
estimate for the case that vopt(x) ≥ 2, which leads to rA(n) ≤ 29/9. For in-
stances with large values of vopt(x), however, this approaches the much better
approximation ratio of 11/9. Therefore we use the notation r∞A (asymptotic
worst-case approximation ratio) to denote the smallest number b such that
for every ε > 0 there is a value v(ε) such that for all x with vopt(x) ≥ v(ε)
the relation rA(x) ≤ b + ε holds. We will see that (under the assumption that
NP �= P) there are problems for which the smallest asymptotic worst-case ap-
proximation ratio achievable in polynomial time is smaller than the smallest
worst-case approximation ratio achievable in polynomial time.

An approximation problem is an optimization problem for which we do not
necessarily demand the computation of an optimal solution but are satisfied to
achieve a prescribed (perhaps asymptotic) approximation ratio in polynomial
time. This raises the question of determining the complexity of approximation
algorithms. We can also ask at what point (for what approximation ratio) the
complexity switches from “NP-equivalent” to “polynomially solvable”. When
we considered optimization problems, we were able to restrict our attention
to the treatment of their decision problem variants. Approximation problems
have reasonable variants as evaluation problems: In the case of maximization
problems, we can require that a bound b be computed so that the value of the
optimal solution lies in the interval [b, b · (1 + ε)]; for minimization problems
the optimal value should be in the interval [b/(1+ε), b]. There is not, however,
any meaningful decision variant for an approximation problem. For inputs x
with v(x, s) ≤ b for all s ∈ S(x), the question of whether the value of an
optimal solution to a maximization problem lies in the interval [b, b · (1 + ε)]
requires a statement about the value of an optimal solution.

Our definitions allow trivial solutions. For example, for Clique an algo-
rithm can always output a single vertex as a clique of size 1. The result is an
approximation ratio of at most n. If instead we consider all sets of vertices of
size at most k, checking them in polynomial time to see which ones form a
clique, and outputting the largest clique found, we are guaranteed an approx-
imation ratio of n/k. Approximation ratios become interesting when they are
not “trivially obtainable”.

102 8 The Complexity of Approximation Problems – Classical Results

Definition 8.1.2. Let r : N → [1,∞) with r(n + 1) ≥ r(n) be given.

• The complexity class APX(r(n)) contains all approximation problems which
can be solved by a polynomial-time algorithm A with a worst-case approx-
imation ratio of rA(n) ≤ r(n).

• We let APX denote the union of all APX(c) for c ≥ 1.
• We let APX∗ denote the intersection of all APX(c) for c > 1.

APX is the class of all approximation problems that can be solved in poly-
nomial time with some constant maximal approximation ratio. The definition
of APX∗ requires an APX(c) algorithm for each c > 1. This does not, however,
imply the existence of an algorithm which given an ε > 0 computes an ε-
optimal solution. Such an algorithm would have the advantage that its users
could choose for themselves the approximation ratio they desired.

Definition 8.1.3. A polynomial-time approximation scheme (abbreviated
PTAS) for an approximation problem is an algorithm A that takes an in-
put of the form (x, ε), where x is an instance of the approximation problem
and ε > 0 is a rational number, and for a fixed ε produces in polynomial time
(with respect to the length of x) a solution with worst-case approximation ratio
at most 1 + ε. The complexity class PTAS contains all optimization problems
for which there is a polynomial-time approximation scheme.

Even with a PTAS we have not satisfied all our wishes. Runtimes of
Θ(n1/ε) or Θ(n · 21/ε) are allowed, since for a constant ε these are poly-
nomially bounded. But for small values of ε, these runtimes are not tolerable,
in contrast to runtimes of, for example, Θ(n/ε).

Definition 8.1.4. A fully polynomial-time approximation scheme (abbrevi-
ated FPTAS) is a PTAS for which the runtime is polynomially bounded with
respect to the length of x and the value of 1/ε. The complexity class FPTAS

contains all optimization problems for which there is a fully polynomial-time
approximation scheme.

If we restrict P to optimization problems, then

P ⊆ FPTAS ⊆ PTAS ⊆ APX .

For optimization problems which presumably do not belong to P, we are in-
terested in determining whether they belong to FPTAS, PTAS, or at least to
APX. In the case of APX, we are interested in finding as small a c as possible
so that the problem belongs to APX(c). For still more difficult problems we
are interested in slowly growing functions r so that the problems belong to
APX(r(n)). There is an obvious generalization of these classes from determin-
istic algorithms to randomized algorithms, but this will not be described in
detail here.

8.2 Approximation Algorithms 103

Approximation algorithms that run in polynomial time for difficult op-
timization problems form a relevant alternative for applications. Com-
plexity classes are available to differentiate which approximation ratios
are achievable.

8.2 Approximation Algorithms

In order to get a feel for approximation algorithms a few examples of efficient
approximation algorithms are discussed here, although for many proofs we
will merely give pointers to textbooks on efficient algorithms. In addition, a
number of approximation results will be cited. We will start with approxima-
tion ratios that grow with the size of the instance and then continue with APX

algorithms, PTAS, and FPTAS.
We begin with two problems for which methods from Chapter 12 suffice

to show that they do not belong to APX if NP �= P. For Max-Clique an ap-
proximation ratio of O(n/log2 n) can be obtained (Boppana and Halldórsson
(1992)). This is only a minor improvement over the trivial approximation ra-
tio of n or εn for arbitrary ε > 0. For the covering problem Min-SetCover

it is also trivial to obtain an approximation ratio of εn. Here, however, it
was possible to achieve in polynomial time an approximation ratio of O(log n)
(Johnson (1974)).

We will now present APX algorithms for a few problems. How good their
approximation ratios are will be discussed in Section 8.3 and in Chapter 12.
Our first example is Min-VertexCover. We will use a simple “pebbling al-
gorithm” in which we imagine placing pebbles on the vertices of the graph as
the algorithm proceeds. At the start of the algorithm, none of the vertices
are pebbled. In linear time we can traverse the list of edges and select an edge
if both of its vertices are still unpebbled. These two vertices are then pebbled.
The algorithm continues until there are no more edges that can be selected;
the output consists of the set of pebbled vertices. If the pebbled vertices did
not cover the edge {v, w}, then this edge could have been selected, so the peb-
bled vertices form a vertex cover of the edges. If k edges are selected, then the
vertex cover contains 2k vertices. The k edges have no vertices in common, so
at least k vertices are needed just to cover those edges. So we have obtained
an approximation ratio of 2.

The following interesting algorithm for Max-3-Sat achieves an approxi-
mation ratio of 8/7 if all the clauses have exactly three different literals. For
each clause ci there are 8 possible assignments for its three variables, and
seven of these satisfy the clause. Let Xi be the random variable that takes
on the value 1 if a random variable assignment satisfies the clause ci and 0
otherwise. By Remark A.2.3, E(Xi) = Prob(Xi = 1) = 7/8; and by Theo-
rem A.2.4 for m clauses if we let X := X1 + · · · + Xm, then we have the
equation E(X) = (7/8) ·m. So on average, (7/8) ·m clauses are satisfied, but
never more than m. So a random variable assignment has an approximation

104 8 The Complexity of Approximation Problems – Classical Results

ratio of at most 8/7. Now we will derandomize this algorithm. For this we
investigate the two possible values of the Boolean variable xn, i.e., xn = 0 or
xn = 1. It is simple to compute E(X | xn = b) for b ∈ {0, 1} as a sum of all
ai := E(Xi | xn = b). Thus ai = 1 if the clause is satisfied by xn = b, ai = 7/8
if the clause still has three unassigned variables, ai = 3/4 if the clause still has
two unassigned variables and the third literal has the value 0. In the course
of this procedure there will be clauses with one unassigned variable and two
literals with the value 0. Then the respective conditional expected value is
1/2. Finally, the conditional expected value of Xi is 0 if all three literals have
already been assigned “false”. By Theorem A.2.9 we have

E(X) =
1

2
· E(X | xn = 0) +

1

2
· E(X | xn = 1) ,

and there is a value bn ∈ {0, 1} such that

E(X | xn = bn) ≥ (7/8) · m .

Since we have computed both conditional expected values, we can choose bn

suitably. Now we continue analogously for the two possible values of xn−1. In
the end we will have found b1, . . . , bn ∈ {0, 1} with E(X | x1 = b1, . . . , xn =
bn) ≥ (7/8) · m. This condition fixes the values of all the variables, and X
is the number of clauses satisfied in this way. The runtime is O(nm), since
for each variable xi we consider the clauses that result from setting xi+1 =
bi+1, . . . , xn = bn.

For Min-BinPacking it is very simple to obtain an approximation ratio of
2. We pack each object in order into a bin, using a new bin only if it does
not fit into any of the bins already used. If all the objects fit into one bin, we
obtain the optimal solution. Otherwise, let b∗ be the size of the contents of the
least packed bin. If b∗ ≤ b/2, then by our strategy all the other bins are filled
with contents at least b− b∗. So on average, the bins are always filled at least
half-way, thus it is impossible to halve the number of bins used. A somewhat
more complicated algorithm achieves in polynomial time an approximation
ratio of 3/2. Here we notice that the larger objects cause special problems.
That leads to the following idea. First the objects are sorted by size, and the
larger objects are packed first. Each object is packed into the bin with the
smallest amount of free space that can still hold the object. The resulting
strategy is referred to as “best-fit decreasing” (BFD). For this algorithm the
relation

v(x, sBFD(x)) ≤
11

9
vopt(x) + 4

was proved (Johnson (1974)). As was already discussed in Section 8.1, this
leads to an upper bound for the asymptotic worst-case approximation ratio of
11/9. A polynomial algorithm of Karmarkar and Karp (1982) has an approx-
imation ratio bounded by 1 + O((log2 vopt(x))/vopt(x)), i.e., an asymptotic
worst-case approximation ratio of 1. This kind of algorithm is also called

8.2 Approximation Algorithms 105

an asymptotic FPTAS. In Section 8.3 and Chapter 12 we will discuss lower
bounds for worst-case approximation ratios of polynomial-time algorithms.

Two results for traveling salesperson problems should be briefly men-
tioned. For Min-TSP� a worst-case approximation ratio of 3/2 can be guar-
anteed by a polynomial-time algorithm (see Hromkovič (1997)), and for
Min-TSPd-Euclid there is even a PTAS (Arora (1997)). For Min-VertexCover

and Max-IndependentSet there is also a PTAS if we require that the graphs
be planar (Korte and Schrader (1981)).

We will demonstrate the construction of a PTAS using as an example a
simple scheduling problem for which even an FPTAS is known. The problem
consists of scheduling n tasks on two processors in such a way that the maximal
load of the processors is minimized. The processors are identical and require
time ai for the ith task. The basic idea is that the most important thing is
to schedule the “large tasks” (those for which ai is large) well, and that there
cannot be all that many large tasks. Let ε > 0 be given and let L := a1+· · ·+an

be the total time required for the n tasks. A task will be considered large if
it requires time at least εL. Then the number of large tasks is bounded by
the constant �1/ε and there are “only” at most c := 2	1/ε
 distributions of
these large tasks between the two processors. For each of these c distributions
the remaining tasks are scheduled “greedily”, that is each task is assigned
to the processor with the lightest load. From among the at most c solutions
that result, the best one is chosen. The required computation time of O(nc)
is linear for a constant ε, but it is not a polynomial in n and 1/ε. We now
compare the maximal load in an optimal solution with the maximal load from
the approximation algorithm. The optimal solution also distributes the large
tasks between the two processors, and we consider the attempted solution of
the approximation algorithm that begins by distributing the large tasks in
exactly the same way. If all the smaller tasks can be handled by the processor
with the lesser load after assigning the large tasks without increasing its load
beyond the load of the other processor, then the approximation algorithm
provides an optimal solution. Otherwise, the greedy algorithm ensures that
the load of the two processors differs by at most εL. Thus the larger load is at
most εL/2 larger than the load of both processors if they are equally loaded.
If the loads are equally distributed, the load for each processor is L/2. For an
instance x, vopt(x) ≥ L/2 and v(x, s) ≤ L/2 + εL/2 = (1 + ε)L/2. Thus the
solution is ε-optimal and we have designed a PTAS.

Finally, we want to discuss the ideas for an FPTAS for Max-Knapsack

(see also Hromkovič (1997)). In the proof of Theorem 7.2.3 we presented a
pseudo-polynomial time algorithm for Knapsack using the method of dynamic
programming. This algorithm was polynomially time-bounded in the case that
the weights were polynomially bounded. In a similar fashion it is possible to
design a pseudo-polynomial time algorithm that is polynomially time-bounded
for polynomially bounded utility values and arbitrary weights. Now consider
an arbitrary instance x of Max-Knapsack. We can assume that wi ≤ W
for each object i. If we alter the utility values, we do not change the set of

106 8 The Complexity of Approximation Problems – Classical Results

acceptable solutions, that is, the set of knapsack packings that do not violate
the weight limit. The idea is to decrease the utility values by replacing ai with
a′

i := �ai · 2
−t for some integer t > 0. Figuratively speaking, we are striking

the last t positions in the binary representation of ai. If we choose t large
enough, then the utility values will be polynomially bounded. We solve the
instance x′ with utility values a′

i. The solution s found in this way is optimal
for the instance x′′ with utility values a′′

i := a′
i · 2

t as well. As solution s∗ for
x we choose the better of solution s and the solution that simply chooses the
object with the largest utility amax. If we choose t too large, then x and x′′ are
too dissimilar and the solution s∗ might not be good. If we choose t too small,
then the utility values are so large that the pseudo-polynomial-time algorithm
doesn’t run in polynomial time. But there is a suitable value for t so that the
approximation ratio is bounded by 1 + ε and the runtime by O(n3/ε). The
result is an FPTAS for Max-Knapsack.

Here is a summary of the approximation ratios obtainable in polynomial
time:

• O(n
log2 n

) for Max-Clique,

• O(log n) for Min-SetCover,

• 2 for Min-VertexCover,

• 8/7 for Max-3-Sat,

• 3/2 for Min-BinPacking,

• 3/2 for Min-TSP�,

• PTAS for Min-TSPd-Euclid,

• PTAS for Min-VertexCoverplanar,

• PTAS for Max-IndependentSetplanar,

• FPTAS for scheduling on two processors,

• FPTAS for Max-Knapsack,

• asymptotic FPTAS for Min-BinPacking.

8.3 The Gap Technique

Now we investigate which approximation problems are difficult. Since the
optimization problems we have considered are all NP-easy, this is also true
for their respective approximation variants. If they are also NP-hard, then
they are in fact NP-equivalent. A central technique for this kind of result is
the so-called gap technique. The main principle of this technique is simple
to explain. If we have an optimization problem such that for every input x
and every solution s ∈ S(x) the value of s is not in the interval (a, b) (i.e.,
either v(x, s) ≤ a or v(x, s) ≥ b), and it is NP-hard to determine which of
vopt(x) ≤ a and vopt(x) ≥ b holds, then it is NP-hard to obtain a worst-
case approximation ratio that is smaller than b/a. For an instance x of a

8.3 The Gap Technique 107

maximization problem with vopt(x) ≤ a, such an approximation algorithm
could output only solutions s with v(x, s) ≤ a. On the other hand, for an
instance x with vopt(x) ≥ b, the algorithm would need to provide a solution
with value v(x, s) such that

v(x, s) ≥ vopt(x) ·
a

b
> b ·

a

b
= a .

But then the gap property implies that v(x, s) ≥ b. Thus we would be able to
distinguish instances x with vopt(x) ≤ a from instances x with vopt(x) ≥ b.
The consideration of minimization problems proceeds analogously. We will
call problems of the type we have just described (a, b)-gap problems.

Remark 8.3.1. If an (a, b)-gap problem is NP-hard, then it is NP-hard to obtain
a worst-case approximation ratio smaller than b/a for its optimization variant.

But how do we get (a, b)-gap problems? Gap problems can arise from
polynomial reductions. If we reduce an NP-hard problem to a decision problem
where we need to decide if an optimal solution to a maximization problem has
value at least b, and if the rejected inputs all have values at most a, then we
have an NP-hard (a, b)-gap problem. It would be great if in Cook’s Theorem
the constructed instances of Sat had a large gap, that is if either all the clauses
were satisfiable or else at most some fraction α < 1 of the clauses could be
satisfied. Unfortunately, the proof of Cook’s Theorem does not provide such a
result. We can always satisfy all the clauses except one by setting the variables
so that they simulate the computation of a Turing machine. Under such an
assignment, the only clause that might not be satisfied is the clause coding
that the final state is an accepting state.

Nevertheless there are very simple applications of the gap technique. In the
polynomial reduction from HC to TSP (Theorem 4.3.1), edges were replaced
with distances of 1, and missing edges were replaced by distances of 2. Round-
trip tours that come from a Hamiltonian circuit in the graph, have a cost of n.
Other tours have a cost of at least n+1. This yields an NP-hard (n, n+1)-gap
problem. In this case, it is easy to increase the size of the gap by replacing the
distances of 2 with some polynomially long numbers, e.g., n2n. Then tours
that do not come from Hamiltonian circuits in the graph have cost at least
n2n + n − 1, so TSP is an NP-hard (n, n2n + n − 1)-gap problem.

Theorem 8.3.2. If NP �= P, then there is no polynomial-time algorithm for
Min-TSP with a worst-case approximation ratio of 2n. ��

So the traveling salesperson problem is in its general form hard even with
exponential approximation ratios, while the knapsack problem can be ap-
proximately solved with an FPTAS. This is an example of how analyzing
approximation variants provides a finer complexity analysis than considering
only pure optimization variants. But it is seldom as easy as it is in the case
of TSP to prove the difficulty of very large approximation ratios.

108 8 The Complexity of Approximation Problems – Classical Results

For most of the optimization problems we consider we obtain at least weak
inapproximability results. An optimization problem is called a problem with
small solution values if the values of all solutions are positive integers and
polynomially bounded in the length of the input. This is true of all scheduling
problems, covering problems, clique problems, team building problems, and
the optimization variants of verification problems. It is also true for large
number problems like traveling salesperson problems, and knapsack problems,
if we restrict the numbers that occur in the input to have values bounded by
a polynomial in the length of the input. It is not immediately obvious how to
think up a problem that even when restricted to small numbers in the inputs
is not a problem with small solution values. Such a problem would arise, for
example, if we defined the cost in a traveling salesperson problem to be the
product of the distance values.

Theorem 8.3.3. If NP �= P, then no NP-hard problem with small solution
values has an FPTAS.

Proof. Let p(n) be a polynomial bound for the solution values. An FPTAS
for ε(n) := 1/p(n) is a polynomial-time approximation algorithm since the
runtime is polynomially bounded in the length of the input n and 1/ε(n) =
p(n). Since we are assuming that NP �= P and that the problem is NP-hard,
this algorithm cannot compute an optimal solution for all inputs. Finally, the
solution values lie in {1, . . . , p(n)}, so every non-optimal solution shows that
the worst-case approximation ratio is at least

p(n)/(p(n) − 1) = 1 + 1/(p(n) − 1) > 1 + ε(n) ,

which contradicts our assumption that there is an FPTAS. ��

This result has consequences especially for optimization problems whose
decision variants are strongly NP-complete. We will call these optimization
problems strongly NP-hard. If the restriction to the NP-hard variant with
polynomial-size numbers is a problem with small solution values, then Theo-
rem 8.3.3 can be applied.

We get large gaps for optimization problems whose decision variants are
already NP-complete for small numbers.

Theorem 8.3.4. If NP �= P and for some minimization problem with integer
solution values it is NP-hard to decide whether vopt(x) ≤ k, then there is no
polynomial-time algorithm with a worst-case approximation ratio smaller than
1+1/k. The same is true for maximization problems and the decision whether
vopt(x) ≥ k + 1.

Proof. We prove the contrapositive. We will use the polynomial algorithm A
with rA(n) < 1 + 1/k to solve the decision problem. An input x is accepted
if and only if A outputs a solution s with v(x, s) ≤ k. This decision is correct
because if there is a solution s′ with v(x, s′) ≤ k but A outputs a solution
s with v(x, s) ≥ k + 1, then the worst-case approximation ratio is at least
(k + 1)/k = 1 + 1/k, a contradiction. ��

8.4 Approximation-Preserving Reductions 109

Corollary 8.3.5. If NP �= P, then Min-GC has no polynomial-time algorithm
with worst-case approximation ratio less than 4/3, and Min-BinPacking has
no polynomial-time algorithm with worst-case approximation ratio less than
3/2.

Proof. For GC the “≤ 3-variant” (Corollary 6.5.3) is NP-complete, and for
BinPacking the “≤ 2-variant” and even the special case of Partition are
NP-complete. ��

Our results for Min-BinPacking show that the notions “in polynomial time
achievable worst-case approximation ratio” and “in polynomial time achiev-
able asymptotic worst-case approximation ratio” are different if NP �= P: The
first parameter is 3/2 while the second is 1.

For Min-GC there are much better results, but we want to use the classical
techniques we have already introduced to show that if NP �= P, then there is
no polynomial-time algorithm with asymptotic worst-case approximation ratio
less than 4/3. For this we consider a graph G = (V, E) with chromatic number
χ(G).

We will construct in polynomial time a graph Gk = (Vk, Ek) with χ(Gk) =
k · χ(G). The (3, 4)-gap will then become a (3k, 4k)-gap, i.e., a gap with
quotient 4/3 for arbitrarily large chromatic numbers. The construction first
makes k disjoint copies of G and then adds an edge between two vertices if they
are in different copies. In this way, each of the k copies must use a distinct
set of colors, and since each copy requires χ(G) colors, χ(Gk) ≥ k · χ(G).
On the other hand, from an m-coloring of G we obtain a km-coloring of Gk

using k “shades” of each of the m colors. Each of the copies of G receives its
own “shade” but is otherwise colored according to the m-coloring of G. More
formally, if vertex v in G is colored with color c, then the corresponding vertex
in copy s of G in Gk is colored with color (c, s). So χ(Gk) ≤ k · χ(G).

In summary, we have used the results from Section 8.2 and the straight-
forward application of the gap technique under the assumption that NP �= P

to obtain the following results.

• Max-Knapsack ∈ FPTAS−P,
• Min-BinPacking ∈ APX−PTAS,
• Min-GC /∈ PTAS,
• Min-TSP /∈ APX.

The PCP Theorem, which will be presented in Chapter 12, provides a
method for applying the gap technique to many more problems.

8.4 Approximation-Preserving Reductions

Theorem 8.3.3 allows us to rule out the existence of an FPTAS for many prob-
lems under the assumption that NP �= P. Negative statements about contain-
ment in PTAS and APX are rarer. For this reason we are interested in reduction

110 8 The Complexity of Approximation Problems – Classical Results

notions that would allow us carry over such conclusions from one problem to
another. What properties do we anticipate for the reduction notions “≤PTAS”
or “≤APX”? They should be reflexive and transitive, and A ≤PTAS B should
ensure that A ∈ PTAS if B ∈ PTAS. Of course, the analogous statements
should hold for ≤APX. As for polynomial reductions, the subprogram for B
will be called only once. Unlike for polynomial reductions, however, this call
cannot come at the very end. The result of a call to the subprogram is a solu-
tion for an instance of problem B, which typically cannot be directly used as
a solution for A. What we need is an efficient transformation that turns good
approximation solutions for instances of problem B into “sufficiently good”
approximation solutions for the given instance of problem A.

Definition 8.4.1. A PTAS reduction of an optimization problem A to an-
other optimization problem B (denoted A ≤PTAS B) consists of a triple
(f, g, α) of functions with the following properties:

• f maps instances x of problem A to instances f(x) of problem B and can
be computed in polynomial time;

• g maps triples (x, s, ε) where x is an instance of A, s ∈ SB(f(x)) is a so-
lution, and ε ∈ Q+, to solutions g(x, s, ε) ∈ SA(x), and g can be computed
in polynomial time;

• α : Q+ → Q+ is a surjective polynomial-time computable function; and
• if rB(f(x), y) ≤ 1 + α(ε), then rA(x, g(x, y, ε)) ≤ 1 + ε.

We will see in our subsequent investigation that this definition satisfies
all our demands. Furthermore, these demands are “sparingly” met. So, for
example, g need only be defined for instances of B that are produced by f
from instances of A.

Lemma 8.4.2. If A ≤PTAS B and B ∈ PTAS, then A ∈ PTAS.

Proof. The input for a PTAS for A consists of an instance x of A and an
ε ∈ Q+. In polynomial time we can compute f(x) and α(ε), apply the PTAS
for B on (f(x), α(ε)), and obtain an α(ε)-optimal solution y ∈ SB(f(x)).
Then we can compute in polynomial time g(x, y, ε) ∈ SA(x) and output the
result as a solution for x. The last property of PTAS reductions ensures that
g(x, y, ε) is ε-optimal for x. ��

Lemma 8.4.3. If A ≤PTAS B and B ∈ APX, then A ∈ APX.

Proof. Since B ∈ APX, there is a polynomial-time approximation algorithm
for B that computes δ-optimal solutions for some δ ∈ Q+. Since the function α
from the reduction A ≤PTAS B is surjective, there is an ε ∈ Q+ with α(ε) = δ.
Now we can use the proof of Lemma 8.4.2 for this constant ε > 0 to obtain
a polynomial-time approximation algorithm for A that guarantees ε-optimal
solutions. ��

8.4 Approximation-Preserving Reductions 111

This shows that we do not need a special reduction notion “≤APX”. For
the sake of completeness we mention that ≤PTAS is reflexive and transitive.
The statement A ≤PTAS A follows if we let f(x) = x, g(x, y, ε) = y, and
α(ε) = ε. If (f1, g1, α1) is a PTAS reduction from A to B and (f2, g2, α2) is a
PTAS reduction from B to C, then there is a PTAS reduction (f, g, α) from
A to C as illustrated in Figure 8.4.1, where f = f2 ◦ f1, α = α2 ◦ α1, and
g(x, y, ε) = g1(x, g2(f1(x), y, α1(ε)), ε).

(x, ε)
y = g1(x, y1, ε)

ε-optimal for A

f1,α1

?
?
y

x
?
?g1

(f1(x), α1(ε))
y1 = g2 (f1(x), y2, α1(ε))

α1(ε)-optimal for B

f2,α2

?
?
y

x
?
?g2

(f2 ◦ f1(x), α2 ◦ α1(ε))
PTAS
−−−−−→
for C

y2 ∈ SC (f2 ◦ f1(x))

α2 ◦ α1(ε)-optimal for C

Fig. 8.4.1. The transitivity of PTAS reductions.

Some of the polynomial reductions that we have already designed turn out
to be PTAS reductions for the corresponding optimization problems with the
function g hidden in the proof of correctness.

Theorem 8.4.4.

1. Max-3-Sat ≤PTAS Max-Clique, and
2. Max-Clique ≡PTAS Max-IndependentSet.

Proof. For the first statement we choose the transformation f from the proof
of 3-Sat ≤p Clique (Theorem 4.4.3). In the proof of correctness, we implicitly
showed how we can efficiently transform every clique of size k in problem f(x)
into a variable assignment of the original instance x that satisfies k clauses.
We let this variable assignment be g(x, y, ε) and let α(ε) = ε.

The second statement follows analogously from the proof that Clique ≡p

IndependentSet (Theorem 4.3.4). In this case we can even set g(x, y, ε) = y
and α(ε) = ε, since a set of vertices that is a clique in G = (V, E) is an
anti-clique in G = (V, E) and vice versa. ��

Finally, the “inflation technique” described at the end of Section 8.3 for the
problem Min-GC is an approximation-preserving reduction of that problem
to itself such that the transformation produces graphs with larger chromatic

112 8 The Complexity of Approximation Problems – Classical Results

numbers. But many of the polynomial reductions we have presented are not
approximation preserving. For example, if we consider the reduction showing
that Sat ≤p 3-Sat in the special case that the Sat-clauses each have length 4,
then m clauses for Max -4- Sat become 2m clauses for Max -3- Sat, of which
m clauses can be satisfied by giving all the new variables the value 1. So an
approximation ratio of 2 for Max -3- Sat has no direct consequences for the
given instance of Max -4- Sat.

The proof of Theorem 8.4.4 shows that the problems Max-Clique and
Max-IndependentSet have identical properties with respect to their approx-
imability. But Theorem 4.3.4 not only showed a close relationship between
Clique and IndependentSet, but also a close relationship between
IndependentSet and VertexCover. For Min-VertexCover we know from
Section 8.2 a polynomial-time approximation algorithm with worst-case ap-
proximation ratio of 2. In the proof that IndependentSet ≤p VertexCover,
the input graph was not changed, only the bound k was changed, namely to
n−k. From a vertex cover V ′ ⊆ V we obtain the independent set V ′′ = V −V ′.
What does this mean for the approximability of Max-IndependentSet? Noth-
ing, as the following example shows. Let the graph G = (V, E) consist of n/2
edges that have no vertices in common. The 2-approximation algorithm com-
putes the entire vertex set V ′ = V , which has an approximation ratio of 2.
V ′′ is then the empty set, and is replaced with a better solution consisting
of a single vertex according to our comments in Section 8.1. The resulting
approximation ratio of n/2, however, is very bad. In fact, we will see in Chap-
ter 12 that Max-Clique and Max-IndependentSet can only be very poorly
approximated.

8.5 Complete Approximation Problems

The success of the theory of NP-completeness leads to the question of whether
there is a class of optimization problems that can play the role of NP, and
whether with respect to this class there is a class of ≤PTAS-complete problems.
The class NP can be defined as the class of problems for which given an in-
stance x and a polynomially long proof attempt y we can decide in polynomial
time whether y proves that x must be accepted by the given decision problem.
For optimization problems, the solutions play the role of these proofs.

Definition 8.5.1. An optimization problem A belongs to the complexity class
NPO (non-deterministic polynomial-time optimization problems) if for an in-
put (x, s) it is possible in polynomial time to check whether s is a solution
for x and, if so, to compute v(x, s). The class NPO restricted to maximiza-
tion problems is denoted Max-NPO, and restricted to minimization problems,
Min-NPO.

It is tempting to extend the containments between complexity classes for
approximation problems from Section 8.1 to

8.5 Complete Approximation Problems 113

P ⊆ FPTAS ⊆ PTAS ⊆ APX ⊆ NPO .

But by our current definitions it is not true that APX ⊆ NPO. From every
decision problem, even non-computable problems, we obtain an APX-problem
in the following way. For each instance x, let S(x) = {0, 1} with 1 correspond-
ing to acceptance and 0 to rejection. Let the value of the correct decision be
2, and of the incorrect decision, 1. The corresponding maximization problem
belongs to APX, since an output of 1 always has an approximation ratio of
at most 2. But if the decision problem is not computable, then the function
v(x, 1) is not computable either. Since NPO contains all of the practically rel-
evant optimization problems, we will now restrict the classes P, FPTAS, PTAS,
and APX to problems in NPO, but continue to use the same notation. Once
we have restricted these classes in this manner, the containments listed above
are true.

Definition 8.5.2. An optimization problem A is NPO-complete if it belongs
to NPO and all problems from NPO can be ≤PTAS-reduced to A. APX-complete,
PTAS-complete, Max-NPO-complete and Min-NPO-complete are defined analo-
gously.

We know from our study of NP-completeness that the main problem will
be to find the first complete problem. After that, since the ≤PTAS-reductions
are transitive, it will suffice to reduce a known complete problem to another
problem from the class being considered. Not until Chapter 12 will we be able
to use the PCP Theorem to show that Max-3-Sat is APX-complete. But there
is a problem that we can show is NPO-complete using classical methods. As we
already know, Sat-problems are good candidates for the “first” complete prob-
lem. An instance of the maximum weight satisfiability problem (Max-W-Sat)
consists of clauses and non-negative integer weights for the variables that ap-
pear in them. The solution set consists of all variable assignments. The value
of a satisfying assignment is the maximum of 1 and the total weight of all the
variables that are assigned 1. The value of other variable assignments is 1.

Lemma 8.5.3. Max-W-Sat is Max-NPO-complete.

Proof. Clearly Max-W-Sat belongs to Max-NPO. Now let A ∈ Max-NPO. Our
task is to design a ≤PTAS-reduction of A to Max-W-Sat. For A, we consider
the following nondeterministic Turing machine. For each instance x of A, the
machine nondeterministically generates a possible solution s. For this phase,
any sequence of symbols of length at most p(|x|) is allowed, where p(n) is a
polynomial bounding |s| for all s ∈ S(x) and all x with |x| = n. Now we check
whether s ∈ S(x). If so, we compute v(x, s), write s and v(x, s) to the tape
and enter an accepting state. If not, we enter a rejecting state. The positions
where s and v(x, s) are written are the same for all inputs of the same length.
Now we apply the transformation from the proof of Cook’s Theorem to this
Turing machine. Finally, we give the weights of the variables. For each j,

114 8 The Complexity of Approximation Problems – Classical Results

the variable that codes whether the jth bit position of v(x, s) contains a 1
receives the weight 2j . All other variables receive weight 0. This describes
the polynomial-time computable function f of the ≤PTAS-reduction we are
constructing.

Since for an instance x of A the solution set S(x) is not empty, there is
always at least one accepting computation, and therefore a satisfying assign-
ment for the instance of Max-W-Sat. The reverse transformation g(x, y, ε)
computes the variables that describe the solution s in the output of the Tur-
ing machine from knowledge of x and the satisfying assignment y. So we can
compute s in polynomial time. Finally, we let α(ε) = ε. If the solution y for
the constructed instance of Max-W-Sat codes the solution s ∈ S(x) for the
given instance x of A, then it also codes the value of v(s, x), and by the def-
inition of the variable weights, the weight of this assignment is v(x, s). So if
the solution for the Max-W-Sat instance is ε-optimal, then the solution for
the instance x of A obtained with the help of g is also ε-optimal. ��

Analogously we can define the problem Min-W-Sat and show that it is
Min-NPO-complete. In fact, Max-W-Sat ≡PTAS Min-W-Sat. The proof is
conceptually simple, but some technical hurdles must be overcome. We will
not present this proof (see Ausiello, Crescenzi, Gambosi, Kann, Marchetti-
Spaccamela, and Protasi (1999)), but draw the following conclusion from
this result:

Theorem 8.5.4. Max-W-Sat and Min-W-Sat are NPO-complete. ��

9

The Complexity of Black Box Problems

9.1 Black Box Optimization

In practical applications randomized search heuristics such as randomized lo-
cal search, simulated annealing, tabu search, and evolutionary and genetic
algorithms have been used with great success. On the other hand, these al-
gorithms never appear in textbooks on efficient algorithms as the best known
algorithms for any problems. This is also justified, since for a given problem,
a problem-specific algorithm will be better than general, randomized search
heuristics. The advantage of search heuristics is that they can be used for
many problems. Since they are not tailored to a particular problem, they ig-
nore much of the information that supports the design of efficient algorithms.
This distinction between problem-specific algorithms and randomized search
heuristics is often unclear, since there are also hybrid variations, i.e., random-
ized search heuristics with problem-specific components. In that case, we are
dealing with problem-specific algorithms, i.e., with normal randomized algo-
rithms, which do not need any special treatment. Here we want to discuss
scenarios in which the use of problem-specific algorithms is not possible.

In real applications, algorithmic problems arise as subproblems in a larger
project. An algorithmic solution must be prepared in a short time, and experts
in the design of efficient algorithms may not be available. In this situation “ro-
bust” algorithms, that is, algorithms that can be used to solve many problems,
offer an alternative to craftfully designed, custom-fit software.

It can even happen that the function to be optimized is not available in
closed form. When optimizing technical systems there are free parameters,
the setting of which influences the system. The search space or solution space
then consists of all allowed combinations of these parameters. Each setting of
the parameters influences the system and its ability to complete its assigned
task. So there is a function that assigns to each setting of the parameters
a value of the resulting system. But for complicated systems, this function
is not available in closed form; we can only derive these values by experi-
mentally testing the system with a particular setting of the parameters. In

116 9 The Complexity of Black Box Problems

practice, these experiments are often simulated with the help of computers,
but the problems of choosing a suitable model and designing the simulation
experiments will be ignored here.

Robust algorithms play an important role in applications, and so the ques-
tion arises whether we can formulate these problems in such a way that they
can be complexity theoretically investigated. In order to abstract away the
technical system, we treat it as a black box. The black box provides, for a
setting a of the parameters, the value f(a). Since f is not available in closed
form, we must use the black box to obtain values of f . In the classical scenario
of optimization this corresponds to the computation of the value of a solution
s for an instance x – i.e., v(x, s) – except that in black box optimization x is
unknown.

A black box problem is specified by a problem size n, the corresponding
search space Sn, and the set Fn of possible problem inputs, which we identify
with the corresponding functions f : Sn → R. The set Fn is not necessarily
finite. Each of the optimization problems we have considered has a black box
variant. For example, the traveling salesperson problem has a search space
Sn consisting of all permutations of {1, . . . , n}, and a function class Fn, that
contains all functions fD : Sn → R such that fD for a distance matrix D
assigns to a permutation π the length of the corresponding tour. Or for the
knapsack problem, the search space is {0, 1}n and the function class Fn con-
sists of all fu,w,W : {0, 1}n → R, such that fu,w,W for a knapsack instance
(u, w, W) assigns to each selection of objects the corresponding utility value
if the weight limit is not exceeded and 0 otherwise. The difference between
this and the scenario from before is that the algorithm has no access to D or
(u, w, W). It is frequently the case that some properties of the target function
are known. For Sn = {0, 1}n it may be that Fn consists of all pseudo-Boolean
polynomials whose degree is at most d, for example. Another interesting class
of functions is the class of unimodal functions, i.e., the class of functions that
have a unique global optimum and for which each point that is not globally
optimal has a Hamming neighbor with a better value.

A randomized search heuristic for a black box problem proceeds as follows:

• A probability distribution p1 on Sn is selected, and f(x1) is computed
(using the black box) for an x1 ∈ Sn selected at random according to p1.

• For t > 1, using knowledge of (x1, f(x1)), . . . , (xt−1, f(xt−1)) the algorithm
does one of the following
– ends the search, in which case the xi with the best f -value is given as

output, or
– continues the search by selecting a new probability distribution pt on Sn

(dependent upon (x1, f(x1)), . . . , (xt−1, f(xt−1))), in which case f(xt)
is computed for an xt chosen at random according to the new proba-
bility distribution pt.

The randomized search heuristics mentioned above all fit into this scheme.
Many of them do not actually store all of the available information

9.1 Black Box Optimization 117

(x1, f(x1)), . . . , (xt−1, f(xt−1)). Randomized local search and simulated an-
nealing work with the current search point only; evolutionary and genetic al-
gorithms work with a subset of search points called the population, the points
of which are often referred to as individuals. In any case, the best result en-
countered is always stored in the background so that it can be given as the
result of the algorithm, if no better solution is found.

The search is often interrupted before one knows whether an optimal so-
lution has already been found. In order to evaluate a heuristic, we must then
relate the expected runtime with the probability of success. Since stop rules
represent only a small problem in practice, we will alter our search heuristics
so that they never halt. We are interested in the expected optimization time,
i.e., the expected time until an optimal solution is given to the black box.
Since the evaluation of an x-value by the black box is considered difficult, we
abstract away the time required to compute pt and to select xt and use the
number of calls to the black box as our measure of time for these algorithms.
This scenario is called black box optimization. The black box complexity of a
black box problem is the minimal (over the possible randomized search heuris-
tics) worst-case expected optimization time. This model makes it possible to
have a complexity theory for randomized search heuristics and their specific
application scenario.

One should ask about the reasonableness of this model. At the core of
our examples is the fact that the function class Fn is known but not the ac-
tual target function f to be optimized. This makes problems more difficult.
Heuristics can collect information about the target function since they learn
function values for selected search points. Typical problem-specific algorithms
are worthless for black box variants. On the other hand, we coarsen our mea-
surement of runtime by counting only the number of calls to the black box.
In this way, NP-hard problems can become polynomial-time solvable, as the
example of maximizing pseudo-Boolean polynomials of degree 2 shows. The
following deterministic search strategy needs only

(
n
2

)
+ n + 2 = O(n2) black

box calls. It obtains the f values for all inputs x with at most two 1’s. Let e0

be the input consisting entirely of 0’s, ei be the input with exactly one 1 in
position i, and eij the input with two 1’s in positions i and j with i < j. The
unknown function can be represented as

f(x) = w0 +
∑

1≤i≤n

wixi +
∑

1≤i<j≤n

wijxixj .

So we can compute the unknown parameters as follows:

• w0 = f(e0),
• wi = f(ei) − w0, and
• wij = f(eij) − w0 − wi − wj .

Finally, given these parameters, f can be optimized with an exponential algo-
rithm. In order to satisfy the demands of a black box algorithm, this optimal
value xopt is used as a last call to the black box.

118 9 The Complexity of Black Box Problems

We really don’t want to allow algorithms like the one just described. One
way out of this is to require that the runtime ignoring the black box calls also
be bounded, say by a polynomial. But so far this has not simplified the proofs
of lower bounds for the black box complexity of any particular problems.
Such bounds will be proved in Section 9.3 without any complexity theoretic
assumptions such as NP �= P or RP �= P. Another solution would be to limit
the number of (x, f(x)) pairs that can be stored in a way that corresponds
to the requirements of most randomized search heuristics actually used. Here,
however, we are more interested in lower bounds and it is certainly the case
that

A problem with exponential black box complexity cannot be efficiently
solved by randomized search heuristics.

In Section 9.2 we present the minimax principle of Yao (1977) which pro-
vides us with a method for proving lower bounds for the black box complexity
of specific problems. This method will be applied in Section 9.3 to selected
problems.

9.2 Yao’s Minimax Principle

The minimax principle of Yao (1977) still represents the only method avail-
able for proving lower bounds for all randomized search heuristics for selected
classes of problems. For this method we must restrict Fn to finite classes
of problems. Since Sn is finite, it is sufficient to restrict the image of the
target function to a finite set such as {0, 1, . . . , N}. It follows that there are
only finitely many different “reasonable” deterministic search heuristics, where
“reasonable” means that calls to the black box are never repeated. Random-
ized search heuristics can select the same search point more than once, but in
that case the call to the black box is not repeated since the answer is already
known from the first call. So there are only finitely many different calls and
only finitely many different possible answers to each call, and therefore only
finitely many deterministic search heuristics.

We are really dealing with only one active person, namely the person who
is designing or selecting the randomized search heuristic, but it is useful to
imagine a second person – an opponent – who chooses the target function
f ∈ Fn with the goal of maximizing the search time. We model our problem
as a game between Alice, the designer of the randomized search heuristic A,
and Bob, the devil’s advocate or opponent who chooses f ∈ Fn. For a choice of
A and f let T (f, A) be the expected number of black box calls that are needed
before a call is made to an optimal search point for f . Alice wants to minimize
this cost. Since we have defined the black box complexity in relation to the
most difficult function, it is Bob’s goal to maximize the cost to Alice. From the
perspective of game theory we are dealing with a two-person zero-sum game.
The payoff matrix for this game has a column for every deterministic search

9.2 Yao’s Minimax Principle 119

heuristic A and a row for every function f ∈ Fn, and the matrix entries are
given by T (f, A). For a given choice of A and f , Alice pays Bob the amount
T (f, A). The choices of A and f happen independently of each other, and we
allow both players to use randomized strategies.

A randomized choice of a deterministic algorithm leads to a randomized
algorithm. The converse is true as well: If we bring together all the random
decisions of a randomized algorithm into one random choice we obtain a prob-
ability distribution on the set of deterministic search heuristics. In this way
we can identify the set of all randomized search heuristics with the set Q of
all probability distributions on the set of deterministic search heuristics. For
each choice of q ∈ Q and the corresponding randomized search heuristic Aq,
Alice’s expected cost for f is denoted T (f, Aq). Alice must fear the expected
cost of max{T (f, Aq) | f ∈ Fn}, which we will abbreviate as maxf T (f, Aq).
This cost does not become larger if Bob is allowed to use a randomized strat-
egy. Let P be the set of all probability distributions on Fn and fp the random
choice of f ∈ Fn that corresponds to p ∈ P . Since T (fp, Aq) is the sum of all
p(f)T (f, Aq), we have

max
f

T (f, Aq) = max
p

T (fp, Aq)

and Alice is searching for a q∗ such that

max
f

T (f, Aq∗) = min
q

max
f

T (f, Aq) = min
q

max
p

T (fp, Aq) .

From the perspective of Bob, the problem is represented as follows: If he
chooses p ∈ P , then he is certain that Alice’s expected cost will be at
least minq T (fp, Aq). With the same arguments as before, this is the same
as minA T (fp, A), and Bob is searching for a p∗ such that

min
A

T (fp∗ , A) = max
p

min
A

T (fp, A) = max
p

min
q

T (fp, Aq) .

The Minimax Theorem that von Neumann proved already in the middle
of the last century in his formulation of game theory (see Owen (1995)) says
that two-person zero-sum games always have a solution. In our situation this
means we have

max
p

min
q

T (fp, Aq) = min
q

max
p

T (fp, Aq) .

It follows by our observations that

v∗ := max
p

min
A

T (fp, A) = min
q

max
f

T (f, Aq).

The so-called value of the game v∗ and optimal strategies can be computed
efficiently by means of linear programming. Here efficiency is measured in
terms of the size of the matrix T (f, A), but is of no concern in our situation.

120 9 The Complexity of Black Box Problems

In all interesting cases, the set Fn and the set of deterministic search heuristics
are so large that we are not even able to construct the matrix T (f, A). We
are only interested in the simpler part of the Minimax Theorem, namely

vBob := max
p

min
A

T (fp, A) ≤ min
q

max
f

T (f, Aq) =: vAlice .

This inequality can be proven as follows. As we have seen, Alice can guar-
antee that her expected costs are not more than vAlice. On the other hand, Bob
can guarantee an expected value of at worst vBob. Since all the money is paid
by Alice to Bob, and no money enters the game “from outside”, vBob > vAlice

would imply that Bob could guarantee an expected payment that is higher
than the bound for the expected costs that Alice can guarantee in the worst
case. This contradiction proves the inequality. The minimax principle of Yao
consists of the simple deduction that for all p ∈ P and all q ∈ Q,

min
A

T (fp, A) ≤ vBob ≤ vAlice ≤ max
f

T (f, Aq) .

The achievement of Yao was to recognize that the choice of a randomized
algorithm for the minimization of the worst-case expected optimization time
for a function set (set of problem inputs) can be modeled as a two-person
zero-sum game. In the following theorem we summarize the results we have
obtained. After that we describe the consequences for proving lower bounds.

Theorem 9.2.1. Let Fn be a finite set of functions on a finite search space Sn,
and let A be a finite set of deterministic algorithms on the problem class Fn.
For every probability distribution p on Fn and every probability distribution q
on A,

minA∈A T (fp, A) ≤ maxf∈Fn
T (f, Aq) . ��

The expected runtime of an optimal deterministic algorithm with respect
to an arbitrary distribution on the problem instances is a lower bound for
the expected runtime of an optimal randomized algorithm with respect to the
most difficult problem instance. So we get lower bounds for randomized al-
gorithms by proving lower bounds for deterministic algorithms. Furthermore,
we have the freedom to make the situation for the deterministic algorithm as
difficult as possible by our choice of a suitable distribution on the problem
instances.

9.3 Lower Bounds for Black Box Complexity

In order to apply Yao’s minimax principle, it is helpful to model deterministic
search heuristics as search trees. The root symbolizes the first query to the
black box. For each possible result of the query there is an edge leaving the
root that leads to a node representing the second query made dependent upon

9.3 Lower Bounds for Black Box Complexity 121

that result. The situation is analogous at all further nodes. For every f ∈ Fn

there is a unique path starting at the root that describes how the search
heuristic behaves on f . The number of nodes until the first node representing
an f -optimal search point is equal to the runtime of the heuristic on f . For
classes of functions where each function has a unique optimum, the search tree
must have at least as many nodes as the function class has optima. Since we
only have to make queries when we can’t already we can’t already compute
the results, each internal node in the search tree has at least two descendants.
Even for a uniform distribution of all optima, without further argument we
don’t obtain any better lower bound than log |Sn|, i.e., a linear lower bound
in the case that Sn = {0, 1}n. Such bounds are only seldom satisfying. An
exception is the log(n!) lower bound for the general sorting problem, with
which most readers are probably already familiar. Using the minimax principle
of Yao, we obtain from this familiar bound for deterministic algorithms and a
uniform distribution over all permutations, a lower bound for the worst-case
expected runtime of any randomized algorithm. If we want to show lower
bounds that are superlinear in log |Sn|, we must prove that the search tree
cannot be balanced.

We begin our discussion with two function classes that are often discussed
in the world of evolutionary algorithms. With the help of black box complex-
ity, the answers to the questions asked in the examples are relatively easy.
The first function class symbolizes the search for a needle in the haystack.
The function class consists of the functions Na for each a ∈ {0, 1}n where Na

is defined by Na(a) = 1 and Na(b) = 0 for b �= a.

Theorem 9.3.1. The black box complexity of the function class {Na | a ∈
{0, 1}n} is 2n−1 + 1

2 .

Proof. We obtain the upper bound by querying the points in the search space
{0, 1}n in random order. For each function Na we find the optimum in the t-th
query with probability 2−n (1 ≤ t ≤ 2n). This gives the expected optimization
time of

2−n(1 + 2 + 3 + · · · + 2n) = 2n−1 +
1

2
.

We show the lower bound using Yao’s minimax principle with the uniform
distribution on {Na | a ∈ {0, 1}n}. If a query returns the value 1, the algorithm
can stop the search with success. So the interesting path in the search tree
is the one that receives an answer of 0 to every previous query. On this path
every a ∈ {0, 1}n must appear as a query. At each level of the tree, only
one new search point can be queried. So the expected search time is at least
2−n(1 + 2 + 3 + · · · + 2n) = 2n−1 + 1

2 . ��

The function class of all Na clarifies the difference between the classical
optimization scenario and the black box scenario. In the classical optimization
scenario the function being optimized Na (and therefore a) is known. The
optimization is then a trivial task since the optimal solution is a. In the black

122 9 The Complexity of Black Box Problems

box scenario, the common randomized search heuristics require an expected
optimization time of Θ(2n). This is inefficient in comparison to the classical
optimization scenario, but by Theorem 9.3.1 it is asymptotically optimal in the
black box scenario. In contrast to many claims to the contrary, the common
randomized search algorithms on the class of all functions of the “needle in
the haystack” variety are nearly optimal. They are slow because that problem
is difficult in the black box scenario.

The black box scenario is very similar for functions that are traps for
typical random search heuristics. For a ∈ {0, 1}n, the function Ta is defined
by Ta(a) = 2n and Ta(b) = b1 + · · · + bn for b ∈ {0, 1}n and b �= a.

Theorem 9.3.2. The black box complexity of the function class {Ta | a ∈
{0, 1}n} is 2n−1 + 1

2 .

Proof. The proof is analogous to the proof of Theorem 9.3.1. For the upper
bound nothing must be changed. For the lower bound one must note that
for each b ∈ {0, 1}n, the functions take on only two different values, namely
b1 + · · ·+ bn and 2n. The function value of 2n means that the query contains
the optimal search point. ��

The functions Ta for a ∈ {0, 1}n do in fact set traps for most of the
common randomized search heuristics that have expected optimization time
of 2Θ(n log n). In contrast, the purely random search, where at each point in
time the search point is selected according to the uniform distribution on the
search space, is nearly optimal. This result is not surprising since common
randomized search heuristics prefer to continue the search close to good search
points. But for the functions Ta this is in general the wrong decision. On the
other hand, the functions Ta are trivial in the classical optimization scenario.

Finally, we want to see a more complex application of Yao’s minimax
principle. It is often maintained that the common randomized search heuristics
are fast on all unimodal functions. We can show that this is not true for many
of these search heuristics by giving a cleverly chosen example. We want to show
that in the black box scenario, no randomized search heuristic can be fast for
all unimodal functions.

The class of unimodal pseudo-Boolean functions f : {0, 1}n → R is not
finite. But if we restrict the range of the functions to the integers z with
−n ≤ z ≤ 2n, then we have a finite class of functions. Now we need to find
a probability distribution on these functions that supports a proof of a lower
bound using Yao’s minimax principle. One might suspect that the uniform
distribution on this class of functions precludes an efficient optimization by
deterministic search heuristics. But this distribution is difficult to work with,
so we will use another distribution. We will consider paths P = (p0, . . . , pm) in
{0, 1}n consisting of a sequence of distinct points pi such that the Hamming
distance H(pi, pi+1) of two adjacent points is always 1 and p0 is 1n. For
each such a path P there is a path function fP defined by fP (pi) = i and
fP (a) = a1 + · · · + an − n for all a not on the path. The function fP is

9.3 Lower Bounds for Black Box Complexity 123

unimodal since pi+1 is better than pi for all i with i < m. For all other points
a, any Hamming neighbor that contains one more 1 will be better. The idea
behind the following construction is that “long random paths” make things
difficult for the search heuristic. The search heuristic cannot simply follow the
path step by step because the path is too long. On the other hand, even if
we know the beginning portion of the path, it is difficult to generate a point
“much farther down the path” with more than a very small probability. These
ideas will now be formalized.

First we generate a random pseudo-path R on which points may be re-
peated. Let the length of the path be l := l(n), where l(n) = 2o(n). Let p0 = 1n.
We generate the successor pi+1 of pi according to the uniform distribution of
all Hamming neighbors of pi. This means that we select a random bit to flip.
From R we generate a path P by removing all the cycles from R in the follow-
ing way. Again we start at 1n. If we reach the point pi along R and j is the
largest index such that pj = pi, then we continue with pj+1. We consider the
probability distribution on the unimodal functions that assigns to the path
function fP the probability with which the random procedure just described
generates the path P . Unimodal functions that are not path functions are
assigned probability 0. Now we investigate deterministic search heuristics on
random unimodal functions selected according to this distribution.

As preparation, we investigate the random pseudo-path R. With high prob-
ability, this path quickly moves far away from each point it reaches, and it is
short enough that with high probability it will never again return to a point
that it reached much earlier. In the next lemma we generalize and formalize
this idea.

Lemma 9.3.3. Let p0, p1, . . . , pl be the random pseudo-path R, and let H be
the Hamming distance function. Then for every β > 0 there is an α = α(β) >
0 such that for every a ∈ {0, 1}n the event Ea that there is a j ≥ βn with
H(a, pj) ≤ αn has probability 2−Ω(n).

Proof. Let Ea,j be the event that H(a, pj) ≤ αn. Since l = 2o(n), there are
2o(n) points pj , and it suffices to bound the probability of the event Ea,j by
2−Ω(n) for each a ∈ {0, 1}n and j ≥ βn. Now consider the random Hamming
distance Ht = H(a, pt) for 0 ≤ t ≤ l. If this distance is large, then for some
time interval it will certainly remain “pretty large”. If this distance is small,
then the chances are good that it will grow quickly. Since we obtain pt+1 from
pt by flipping a randomly selected bit

Prob(Ht+1 = Ht + 1) = 1 − Ht/n .

So if Ht is much smaller than n/2, then there is a strong tendency for the
Hamming distance to a to increase.

Let γ = min{β, 1/10} and α = α(β) = γ/5. We consider the section
pj−	γn
, . . . , pj of R of length �γn, in order to give an upper bound on the
probability of Ea,j . By the definition of α, the event Ea,j , (i.e., Hj ≤ αn) is
equivalent to Hj ≤ (γ/5)n.

124 9 The Complexity of Black Box Problems

If Hj−	γn
 ≥ 2γn, then Hj is certainly at least γn. So we can assume that
Hj−�γn� < 2γn. Then during the entire section of R that we are considering,
Ht is at most 3γn ≤ (3/10)n. So we are dealing with �γn steps at which
Ht increases by 1 with probability at least 1 − 3γ ≥ 7/10 and otherwise
decreases by 1. The Chernoff Inequality (Theorem A.2.11) guarantees that
the probability that there are fewer than (6/10)γn steps among the �γn
steps we are considering that increase the Hamming distance is bounded by
2−Ω(n).

If we have (6/10)γn increasing steps, then we have an excess of at least
(6/10)γn − (4/10)γn = (γ/5)n increasing steps and the Hamming distance
Hj is at least (γ/5)n. ��

Lemma 9.3.3 has the following consequences. The pseudo-path R is con-
structed by a Markov process, that is, by a “memory-less” procedure. So
pi, . . . , pl satisfy the assumptions of the lemma. For a = pi and β = 1, this
implies that after more than n steps R reaches pi again with probability at
most 2−Ω(n). Since there are only 2o(n) points pi, the probability of a cycle of
length at least n in R is bounded by 2−Ω(n). So with probability 1 − 2−Ω(n)

the length of P is at least l(n)/n.

Theorem 9.3.4. Every randomized search heuristic for the black box opti-
mization of unimodal pseudo-Boolean functions has for each δ(n) = o(n) a
worst-case expected optimization time of 2Ω(δ(n)). The minimal success prob-
ability of such a heuristic after 2O(δ(n)) steps is 2−Ω(n).

Proof. The proof uses Yao’s minimax principle (Theorem 9.2.1). We choose
l(n) so that l(n)/n2 = 2Ω(δ(n)) and l(n) = 2o(n). By the preceding discussion,
the probability that the length of P is less than l(n)/n is exponentially small.
We will use 0 as an estimate for the search time in these cases, and assume in
what follows that P has length at least l(n)/n.

For the proof we describe a scenario that simplifies the work of the search
heuristic and the analysis. The “knowledge” of the heuristic at any point in
time will be described by

• the index i such that the initial segment p0, . . . , pi of P is known, but no
further points of P are known; and

• a set N of points that are known not to belong to P .

At the beginning i = 0 and N = ∅. The randomized search heuristic generates
a search point x and we define this step to be a successful step if x = pk with
k ≥ i+n. If it is not successful, i is replaced with i+n, and the search heuristic
learns the next n points on the path. If x does not belong to the path, then
x is added to N . To prove the theorem, it is sufficient to prove that for each
of the first �l(n)/n2 steps the probability of success is 2−Ω(n).

We consider first the initial situation with i = 0 and N = ∅. It follows
directly from Lemma 9.3.3 with β = 1 that each search point x has a success

9.3 Lower Bounds for Black Box Complexity 125

probability of 2−Ω(n). In fact, the probability that P is still in the Hamming
ball of radius α(1) around x after at least n steps is 2−Ω(n).

After m unsuccessful steps, mn + 1 points of the initial segment of P are
known, and N contains at most m points. The analysis becomes more difficult
because of the knowledge that these at most mn + m + 1 points will never
again be reached by P . Let y be the last known search point that lies on P .
The set M of path points p0, . . . , pmn and the points in N are partitioned
into two sets M ′ and M ′′ such that M ′ contains the points that are far from
y (more precisely: with Hamming distance at least α(1)n from y), and M ′′

contains the remaining points (the ones close to y). First we will work under
the condition of event E that the points from M ′ do not occur again on the
path. Since Prob(E) = 1 − 2−Ω(n), the condition E can only have a small
effect on the probability we are interested in. For a search point x, let x∗ be
the event that this point successfully ends the search. Then

Prob(x∗ | E) = Prob(x∗ ∩ E)/Prob(E)

≤ Prob(x∗)/Prob(E) = Prob(x∗) · (1 + 2−Ω(n)) .

So the success probability grows only by a factor close to 1, and so remains
2−Ω(n).

Finally, we must deal with the points in M ′′. Now we apply Lemma 9.3.3
for β = 1/2. After n/2 steps, with probability 1 − 2−Ω(n) P has Hamming
distance at least α(1/2)n from y and from every other point in M . So we
can apply the argument above on the remaining n/2 steps, but this time “far
apart” will mean a distance of at least α(1/2)n. This suffices to estimate the
success probability as 2−Ω(n). ��

Yao’s minimax principle makes it possible to prove exponential lower
bounds for randomized search heuristics that are used in black box
scenarios.

10

Additional Complexity Classes and

Relationships Between Complexity Classes

10.1 Fundamental Considerations

In Chapter 3 we introduced and investigated the fundamental complexity
classes. The relationships between them were summarized in Theorem 3.5.3.
Reductions serve to establish relationships between individual problems. If a
problem is compared with a complexity class C, it can prove to be C-easy, C-
hard, C-complete, or C-equivalent. In this way we learn something about the
complexity of problems in relation to the complexity of other problems and
in relation to complexity classes. The theory of NP-completeness has proven
itself to be the best tool currently known for classifying as difficult many
important problems under the hypothesis that NP �= P.

And so we have convinced ourselves that the investigation of complexity
classes like NP that are defined in terms of algorithms that are not practically
efficient can nevertheless be well-motivated.

In this chapter we return to these fundamental complexity classes and de-
fine new classes as well. We begin in Section 10.2 with the inner structure of
NP and co-NP. In Section 10.4 we define and investigate the polynomial hierar-
chy of complexity classes that contain NP. To that end we define oracle classes
in Section 10.3. While a Turing reduction may make use of an algorithm for
a particular problem, we will now allow algorithms for any problem in an en-
tire complexity class. We obtain new complexity theoretical hypotheses, some
of which are stronger than the NP �= P-hypothesis but still well-supported. In
later chapters we will draw consequences from these hypotheses that we do
not (yet) know how to derive from NP �= P. In addition we obtain indications
about which proof methods we cannot use to prove the NP �= P-conjecture.

Of course, all this begs the question, why all these considerations are re-
lated to NP and classes above NP, and why we don’t continue with an in-
vestigation of algorithmically relevant classes like ZPP, RP, co-RP, and BPP.
The main reason is that BPP �= P is not as well-supported a hypothesis as
NP �= P. While we suspect that the NP-complete problems (and therefore a
great number of well-studied problems) do not belong to P, there are hardly

128 10 Additional Complexity Classes

any such problems that we know belong to BPP but suspect do not belong
to P. A proof that BPP = P would be a far-reaching and strong result, but it
would not bring down the currently reigning view of the world of complexity
classes – in contrast to a proof of NP = P. Among experts, the opinion is
widely held that “P is close to BPP” but that P and NP are separated by the
world of NP-complete problems. The notion “is close to” is, of course, not for-
malizable. We will further support these considerations in Section 10.5 where
we investigate the relationship between NP and BPP.

10.2 Complexity Classes Within NP and co-NP

If NP = P, then since P = co-P it follows that co-NP = P and we only have the
class of efficiently solvable problems. This is not only unexpected, it is also
less interesting than the other case. From Section 5.1 we know that in P there
are three equivalence classes with respect to the equivalence relation ≡p:

• all problems for which no input is accepted,
• all problems for which all inputs are accepted, and
• all other problems.

If NP �= P, then by definition the class NPC of all NP-complete problems
forms a fourth equivalence class with respect to ≡p. Are there still more
equivalence classes? This is equivalent to the question of whether or not the
class NPI := NP−(P∪NPC) is empty. Of course, we can’t prove that any
problem belongs to NPI, since then we would have proven that NP �= P. But
perhaps there are problems that we suspect belong to NPI? Garey and Johnson
(1979) list three problems which at that time were considered candidates for
membership in NPI:

• the problem of linear programming (LP), i.e., the problem of determining
whether a linear function on a space restricted by linear inequalities takes
on a value at least as large as a given bound b;

• primality testing (Primes); and
• the graph isomorphism problem (GraphIsomorphism, or sometimes more

briefly abbreviated as GI; see also Section 6.5).

It has been known for a long time already that LP ∈ P (see, for example,
Aspvall and Stone (1980)). Primes was known to belong to NP, co-NP, and
even co-RP. Miller (1976) had already designed a polynomial-time primality
test based on an unproven hypothesis from number theory. So Primes was also
a candidate for membership in P. Finally, Agrawal, Kayal, and Saxena (2002)
were able to prove that in fact Primes ∈ P. Their arguments, however, have
no consequences for the complexity of the factoring problem Fact. The proof
that a number n is not prime is based on number theoretic arguments that
have not (yet) been any help in computing a divisor of n. The conjecture that
Fact is not polynomial-time solvable has not been shaken by the discovery of a

10.2 Complexity Classes Within NP and co-NP 129

polynomial-time primality test. In particular, cryptographic protocols like the
RSA system and PGP that are based on the supposed difficulty of factoring,
cannot be attacked with this primality test.

For GI there are no indications that GI ∈ P. In Chapter 11 we will provide
support for the conjecture that GI is not NP-complete. So for the moment, GI

is the best-known decision problem that is conjectured to belong to NPI.
Since we want to concentrate on results about concrete algorithmic prob-

lems, the following existence result of Ladner (1975) will only be cited.

Theorem 10.2.1. If NP �= P, then NPI is not empty and, in fact, contains
problems that are incomparable with respect to ≤p. ��

So if NP �= P, then there are several ≡p-equivalence classes within NPI.

The power of the concept of polynomial reductions can be seen in the
fact that almost all problems of interest have been proven to be either
NP-equivalent or polynomial-time solvable. But if NP �= P, then there
is actually a rich structure of problems between P and NPC.

We want to discuss the relationship between NP and co-NP. They are duals
of each other since by definition co-co-NP = NP. This means that either NP =
co-NP or neither class contains the other, since from NP ⊆ co-NP it follows
that co-NP ⊆ co-co-NP = NP. In Section 5.3 we characterized NP using a
polynomially bounded existential quantifier and polynomial-time predicates.
Formally, L ∈ NP if and only if there is a language L′ ∈ P and a polynomial
p such that

L =
{

x | ∃z ∈ {0, 1}p(|x|) : (x, z) ∈ L′
}

.

Languages in co-NP can be characterized in a dual manner. Formally, the exis-
tential quantifier is replaced by a universal quantifier. The NP �= P-hypothesis
means that without the existential quantifier we cannot describe as many lan-
guages as with it. If we believe that in this sort of representation existential
quantifiers cannot be replaced with universal quantifiers (and other languages
L′ ∈ P), then this is equivalent to the NP �= co-NP-hypothesis. As was explained
at the beginning of this section, a proof that NP �= co-NP implies that NP �= P.
We have also seen that to prove that NP = co-NP, it suffices to show that
NP ⊆ co-NP. The following line of thought is intuitively obvious: If a hardest
problem in NP, that is an NP-complete problem, belongs to co-NP, then all of
NP belongs to co-NP. We will use this kind of reasoning often, so we formalize
it here.

Theorem 10.2.2. If L is NP-complete and L ∈ co-NP, then NP = co-NP.

Proof. As we have already discussed, it is sufficient to show that under the
hypotheses of the theorem, if L′ ∈ NP, then L′ ∈ co-NP. But this is equivalent
to L ∈ NP. We describe a polynomial-time bounded nondeterministic Turing

130 10 Additional Complexity Classes

machine that accepts inputs w ∈ L′ and rejects input w /∈ L′. Since L is NP-
complete and L′ ∈ NP, L′ ≤p L. So there is a polynomial-time computable
function f such that

w ∈ L′ ⇔ f(w) ∈ L .

We apply this function f to the input w for L′. It follows that

w ∈ L′ ⇔ f(w) ∈ L .

Since L ∈ co-NP, we can nondeterministically check whether f(w) ∈ L in
polynomial time, and so we have a polynomial-time nondeterministic test for
whether w ∈ L′. ��

The NP �= co-NP-hypothesis implies that languages L ∈ NP∩ co-NP are nei-
ther NP-complete nor co-NP-complete. Before the proof that Primes ∈ P, the
fact that Primes ∈ NP∩ co-NP was the best indication that Primes was nei-
ther NP-complete nor co-NP-complete. For the graph isomorphism problem we
know that GI ∈ NP, but we do not know if GI ∈ co-NP. So this kind of con-
sideration provides no support for the conjecture that GI is not NP-complete.

Finally, the NP �= co-NP-hypothesis implies that NP-complete problems do
not belong to co-NP. Therefore, it is not surprising that we have not been able
to represent any of the known NP-complete problems with universal quantifiers
and thus show them to belong to co-NP. In summary, we conjecture that the
world within NP∪ co-NP is as illustrated in Figure 10.2.1.

10.3 Oracle Classes

Already when we introduced Turing reductions A ≤T B in Section 4.1 we
spoke of polynomial-time algorithms for A with oracle B. We will continue to
use the notion of an oracle, although this term sounds somewhat mysterious
and imprecise. In fact, we are simply talking about a subprogram for B, a
call to which (usually called a query) is assigned a cost of 1. The term oracle
is perhaps an unfortunate choice, but it is the usual designation for this sort
of subprogram. Since we will only consider oracles for decision problems, we
don’t have to concern ourselves with how one should measure the cost of an
oracle query when the response is longer than the question.

Definition 10.3.1. The complexity class P(L) for a decision problem L con-
tains all decision problems L′ such that L′ ≤T L, that is, all problems L′ that
can be decided by polynomial-time algorithms with access to an oracle for L.
The complexity class P(C) for a class C of decision problems is the union of
all P(L) with L ∈ C.

If the complexity class C contains a ≤T- or ≤p-complete problem L∗, then
P(C) = P(L∗), since each query to an oracle L ∈ C can be replaced by a
polynomial-time algorithm that queries oracle L∗. In particular, P(NP) =

10.3 Oracle Classes 131

P

NPI∩co-NPI

co-NPI

co-NP

NPC

NPI

NP

co-NPC

Fig. 10.2.1. The complexity world within NP∪ co-NP under the assumption that
NP∩ co-NP �= P.

P(Sat). We suspect that P(NP) is a strict superclass of NP. Otherwise we
would be able to replace all the queries to Sat in a polynomial-time algorithm
with a single query at the very end, the answer to which we would not be
allowed to change. In particular, co-NP ⊆ P(NP) since we can reverse the
answer of the NP-oracle. These arguments even suggest that P(NP) is a strict
superclass of NP∪ co-NP. We can’t prove any of this, however, since NP = P

would imply that P(NP) = P(P) = P.
This operator cannot be iterated, since P(P(C)) = P(C): A polynomial-time

computation in which we may make queries to a polynomial-time computation
with oracle L is nothing more than a polynomial-time computation with oracle
L.

In our earlier considerations, it was an important step to consider NP in
addition to P. So now we want to consider NP(L) and NP(C) in addition to
P(L) and P(C).

Definition 10.3.2. For a decision problem L, the complexity class NP(L) con-
tains all decision problem L′ for which there is a nondeterministic polynomial-
time algorithm with oracle L. For a class of decision problems C, the complex-
ity class NP(C) is the union of all NP(L) for L ∈ C.

P(P) = P and NP(P) = NP, since the oracle queries can be replaced by
(deterministic) polynomial-time algorithms. In order to become more familiar

132 10 Additional Complexity Classes

with these notions, we introduce a practically important problem that belongs
to co-NP(NP) but is conjectured not to belong to either P(NP) or NP(NP). The
language of all minimal circuits over all binary gates (MC) consists of all
circuits with one output gate for which there is no circuit with fewer gates
that computes the same Boolean function.

Theorem 10.3.3. MC ∈ co-NP(NP).

Proof. We will show that the complement MC is in NP(NP). Let C be a
circuit, and let f be the function computed by C. In polynomial time we
nondeterministically generate a circuit C ′ that has fewer gates than C. The
function computed by C ′ we denote f ′. From C and C ′ we form with one
additional gate of type ⊕ (exclusive or) a new circuit C ′′ for which f ′′ = f⊕f ′.
As oracle we select the NP-complete satisfiability problem for circuits, which
we denote Satcir. The oracle accepts C ′′ if and only if there is some a such
that f ′′(a) = 1, that is, if and only if there is an a such that f ′(a) �= f(a). In
this case, the algorithm rejects C. If the oracle rejects C ′′, then f ′ = f , and C ′

is a smaller circuit that computes the same function that C computes. So the
algorithm knows that C is not minimal and accepts C. Thus C is accepted on
at least one computation path if and only if C is not minimal, as was desired.

��

As a final note, we point out that there is an alternative “exponential”
notation for these classes that is also common in the literature. In this notation
PC and NPC are used in place of P(C) and NP(C), for example.

10.4 The Polynomial Hierarchy

In Section 10.3 we prepared the tools to define a multitude of complexity
classes. We will travel this path formally and look at a few properties of
these complexity classes. Along the way, we will see that these complexity
classes have clear, logical descriptions, from which we can construct complete
problems. Their description supports the hypothesis that these complexity
classes form a genuine hierarchy, that is, they form an increasing sequence of
distinct complexity classes with respect to set inclusion.

Definition 10.4.1. Let Σ1 := NP, Π1 := co-NP, and ∆1 := P. For k ≥ 1, let

• Σk+1 := NP(Σk),
• Πk+1 := co-Σk+1, and
• ∆k+1 := P(Σk).

The polynomial hierarchy (PH) is the union of all Σk for k ≥ 1.

It is also consistent to let Σ0 = Π0 = ∆0 = P, and to extend the definition
to all k ≥ 0. As we saw in Section 10.3, Σ1 = NP, Π1 = co-NP and ∆1 = P.

10.4 The Polynomial Hierarchy 133

With the new notation, the statement if Theorem 10.3.3 can be expressed as
MC ∈ Π2. We list a few properties of the new complexity classes in order to
get a picture of the relationships between them.

Lemma 10.4.2. For the complexity classes within the polynomial hierarchy
we have the following relationships:

• ∆k = co-∆k = P(∆k) ⊆ Σk ∩ Πk ⊆ Σk ∪ Πk ⊆ ∆k+1 = P(Πk).

• Σk+1 = NP(Πk) = NP(∆k+1).

• Πk+1 = co-NP(Πk) = co-NP(∆k+1).

• Σk ⊆ Πk ⇒Σk = Πk.

Proof. We have ∆k = co-∆k, since by definition ∆k = P(Σk−1) and with
Turing-reductions we can negate the answer at the end. Also, P(∆k) =
P(P(Σk−1)) = P(Σk−1) = ∆k, since a polynomial algorithm that may query
a polynomial-time algorithm with oracle L ∈ Σk−1 is nothing more than a
polynomial-time algorithm that may make queries to the oracle L ∈ Σk−1 ⊆
∆k. Clearly ∆k = P(Σk−1) ⊆ NP(Σk−1) = Σk, and ∆k = co-∆k ⊆ Πk.
The inclusion P(C) ⊆ NP(C) holds by definition for all complexity classes
C. Similarly, it follows from the definitions that Σk ⊆ P(Σk) = ∆k+1 and
Πk = co-Σk ⊆ co-∆k+1 = ∆k+1. Finally, ∆k+1 = P(Σk) = P(Πk), since an
oracle L ∈ Σk is of the same use as an oracle L ∈ co-Σk = Πk. We can simply
reverse the answers to the oracle queries.

By the same argument it follows that Σk+1 = NP(Σk) = NP(Πk). From
Σk ⊆ ∆k+1 it follows that Σk+1 = NP(Σk) ⊆ NP(∆k+1). For the reverse
direction we must argue that an oracle L ∈ ∆k+1 can be replaced by an
oracle L′ ∈ Σk. Since ∆k+1 = P(Σk), an oracle L ∈ ∆k+1 can be replaced
by a polynomial-time algorithm with oracle L′ ∈ Σk. The result is a non-
deterministic polynomial-time algorithm that queries a polynomial-time algo-
rithm with oracle L′.

The third statement follows from the second by taking complements.
Finally, Σk ⊆ Πk, implies that Πk = co-Σk ⊆ co-Πk = Σk and thus that

Σk = Πk. ��

Analogous to the representations in Chapter 3, we obtain the complexity
landscape within the polynomial hierarchy depicted in Figure 10.4.1.

The conjecture that the classes of the polynomial hierarchy form a gen-
uine hierarchy contains the conjecture that all the inclusions in Figure 10.4.1
are strict inclusions and that the classes Σk and Πk are incomparable with
respect to set inclusion. Thus we obtain the following complexity theoretical
hypotheses:

• Σk �= Σk+1,
• Πk �= Πk+1,
• Σk �= Πk,
• ∆k �= Σk ∩ Πk �= Σk �= Σk ∪ Πk �= ∆k+1.

134 10 Additional Complexity Classes

Σ2 ∪ Π2

Σ2 Π2

Σ2 ∩ Π2

Σ1 ∪ Π1 = NP∪ co-NP

Σ1 = NP Π1 = co-NP

Σ1 ∩ Π1 = NP∩ co-NP

∆1 = P

∆2

∆3

...

PH

Fig. 10.4.1. The complexity landscape within the polynomial hierarchy. Arrows
represent set inclusion.

Before investigating relationships between these hypotheses, we will derive
a logical representation of the complexity classes Σk and Πk. This will simplify
later considerations.

Theorem 10.4.3. A decision problem L belongs to the class Σk if and only
if there is a polynomial p and a decision problem L′ ∈ P such that for A =
{0, 1}p(|x|),

L = {x | ∃y1 ∈ A ∀ y2 ∈ A ∃ y3 ∈ A . . . Q yk ∈ A : (x, y1, . . . , yk) ∈ L′} .

The quantifier Q is chosen to be an existential or universal quantifier in such
a way that the sequence of quantifiers is alternating.

10.4 The Polynomial Hierarchy 135

Proof. We prove the theorem by induction on k. For k = 1 the statement was
already proven in Theorem 5.3.2. Now suppose we have a representation of
L of the type described for some k ≥ 2. A nondeterministic algorithm can
nondeterministically generate y1 ∈ A. We allow the algorithm to access as
oracle the decision problem

L∗ := {(x, y1) | ∃ y2 ∈ A ∀ y3 ∈ A . . . Q yk ∈ A : (x, y1, . . . , yk) ∈ L′} .

Recall that Q is the quantifier that makes the sequence of quantifiers alternate.
Since L ∈ P implies that L ∈ P, by the inductive hypothesis L∗ ∈ Σk−1. The
nondeterministic algorithm queries the oracle L∗ about (x, y1) and reverses
the answer. If x ∈ L, then there is some y1 ∈ A such that

∀ y2 ∈ A ∃ y3 ∈ A . . . Q yk ∈ A : (x, y1, . . . , yk) ∈ L′

is true. Therefore, (x, y1) /∈ L∗, and the nondeterministic algorithm accepts
x. If x /∈ L, then by DeMorgan’s laws for all y1 ∈ A,

∃ y2 ∈ A ∀ y3 ∈ A . . . Q yk ∈ A : (x, y1, . . . , yk) /∈ L′

holds. So (x, y1) ∈ L∗ for all y1 ∈ A, and the nondeterministic algorithm does
not accept x on any path. The runtime is polynomially bounded since y1 has
polynomial length.

Now suppose L ∈ Σk. Then L has a nondeterministic polynomial-time
bounded algorithm AL with oracle L′ ∈ Σk−1. By the inductive hypothesis
there is a decision problem B ∈ P such that

L′ = {z | ∃ y2 ∈ A ∀ y3 ∈ A . . . Q yk ∈ A : (z, y2, . . . , yk) ∈ B} .

There are two polynomials q and r such that the algorithm AL on input x
queries the oracle L′ at most q(|x|) times with queries of length at most r(|x|).
We can easily modify AL and L′ so that on every computation path for every
input z of length |x| exactly q(|x|) queries are made, each of length r(|x|).
Then x ∈ L if and only if there is an accepting computation path w with
corresponding oracle queries b1, . . . , bq(|x|) and oracle answers a1, . . . , aq(|x|).
We want to express this in a quantified expression of the desired form.

The quantified expression begins

∃w, b1, . . . , bq(|x|), a1, . . . , aq(|x|) .

Let C∗ be the set of all (x, w, b1, . . . , bq(|x|), a1, . . . , aq(|x|)), such that

• the ith query of AL on input x along the computation path w is bi if the
previous queries are b1, . . . , bi−1 and the answers received are a1, . . . , ai−1;
and

• x is accepted along this path.

136 10 Additional Complexity Classes

Clearly C∗ ∈ P. It remains to check whether the answer ai is the correct
answer to query bi. If ai = 1, then we can check this answer via the formula

∃ yi
2 ∈ A ∀ yi

3 ∈ A . . . Q yi
k ∈ A : (bi, y

i
2, . . . , y

i
k) ∈ B .

If ai = 0, then we can check this answer via the formula

∀ yi
2 ∈ A ∃ yi

3 ∈ A . . . Q yi
k ∈ A : (bi, y

i
2, . . . , y

i
k) ∈ B .

Since ai is not known in advance, we must combine both of these cases allowing
the decision problem access to ai:

∃ yi
1 ∈ A ∀ yi

2 ∈ A . . . Q yi
k ∈ A : (bi, ai, y

i
1, . . . , y

i
k) ∈ B∗ ,

where B∗ contains all vectors with ai = 1 and (bi, y
i
1, . . . , y

i
k−1) ∈ B, and all

vectors with ai = 0 and (bi, y
i
2, . . . , y

i
k) ∈ B. Here we see that the case ai = 0

increases the number of quantifier alternations by 1. Now we can bring all
these statements together. The first existential quantifier is over w and all
bi, ai, y

i
1, 1 ≤ i ≤ q(|x|). The following universal quantifier is over all yi

2, 1 ≤
i ≤ q(|x|). This continues until the kth quantifier. Finally, the decision problem

B contains all (x, w, b1, a1, y
1
1 , . . . , y1

k, . . . , bq(|x|), aq(|x|), y
q(|x|)
1 , . . . , y

q(|x|)
k) with

(x, w, b1, . . . , bq(|x|), a1, . . . , aq(|x|)) ∈ C∗ and (bi, ai, y
i
1, . . . , y

i
k) ∈ B∗, 1 ≤ i ≤

q(|x|). So B′ ∈ P. Now it is only a technical detail to make sure that behind
each quantifier there is a Boolean variable vector of the same polynomial
length p′(|x|). ��

Using DeMorgan’s laws we obtain the following corollary.

Corollary 10.4.4. A decision problem is in Πk if and only if there is a poly-
nomial p and a decision problem L′ ∈ P such that if we let A = {0, 1}p(|x|),
then

L = {x | ∀ y1 ∈ A ∃ y2 ∈ A . . . Q yk ∈ A : (x, y1, . . . , yk) ∈ L′} . ��

Here is a summary of the results we have achieved:

The complexity classes Σk and Πk contain problems that can be de-
scribed with k−1 quantifier alternations, polynomially many variables,
and a polynomial-time decidable predicate. They differ in the type of
the first quantifier. The hypothesis that these classes are all different is
the hypothesis that each new quantifier increases the descriptive power
of such formulas and that it matters which type of quantifier is used
first.

This logical perspective simplifies the proof of the following results.

Theorem 10.4.5. If Σk = Πk, then PH = Σk.

10.4 The Polynomial Hierarchy 137

This theorem clearly means that under the assumption that Σk = Πk,
the complexity landscape in Figure 10.4.1 “collapses” above Σk ∩ Πk, since
all higher classes are equal to Σk ∩ Πk. So the complexity theoretical hy-
pothesis Σk+1 �= Σk is a stronger assumption than Σk �= Σk−1, and the
NP �= P-hypothesis is the weakest of all these assumptions. As was shown in
Section 10.2, it follows from NP = P that NP = co-NP, i.e., that Σ1 = Π1 and
PH = P.

Proof. We will show that Σk = Πk implies that Σk+1 = Πk+1 = Σk. The
argument can be completed using induction on k.

In the proof of Theorem 10.4.3 we proceeded very formally. Here we want
to argue more intuitively. As an example, let’s look at the case k = 4. From
the perspective of Theorem 10.4.3, Σ4 = Π4, means that

∃ ∀ ∃ ∀ P = ∀ ∃ ∀ ∃ P . (10.1)

Behind the quantifiers we may only have polynomially many variables and
P stands for decision problems from P, which may be different on the two
sides of the equation. Now we consider Σ5, that is, a problem of the form
∃ (∀∃∀∃ P). The parentheses are not needed, but they are there to indicate
that we want to apply Equation 10.1 to the bracketed expression to obtain
an expression of the form ∃ ∃ ∀ ∃ ∀ P. Two quantifiers of the same type can be
brought together as a single quantifier. So every Σ5-problem can be written
in the form ∃∀∃∀ P and so belongs to Σ4. It follows that Σ5 = Σ4 = Π4.
Π5 = Π4 = Σ4 follows analogously. ��

Corollary 10.4.6. If Σk = Σk+1, then PH = Σk.

Proof. Σk ⊆ Πk+1. From Σk = Σk+1 it follows that Σk+1 ⊆ Πk+1 and by
Lemma 10.4.2 Σk+1 = Πk+1 as well. Now Theorem 10.4.5 implies that PH =
Σk+1. Together with the hypothesis of the corollary, it follows that PH = Σk.

��

The logical perspective of Theorem 10.4.3 leads to a canonical general-
ization of the well-known satisfiability problems like Satcir to satisfiability
problems of level k. These problems deal with circuits C on k variable vectors
x1, . . . , xk of length n so that for A = {0, 1}n we have

∃x1 ∈ A ∀x2 ∈ A . . . Q xk ∈ A : C(x) = 1.

Here we let C(x) denote the value of the circuit C when the input is x =
(x1, . . . , xk). Since it is possible in polynomial time to verify the statement
“C(x) = 1”, it follows by Theorem 10.4.3 that Satk

cir ∈ Σk. Just as Sat and
Satcir are canonical candidates for NP−P, Satk

cir is a canonical candidate
for Σk − Σk−1. Of course, we have in MC a practically relevant problem that
we suspect is in Π2 − Π1, but for very large values of k we can’t expect to
have practically relevant problems that we suspect are in Σk − Σk−1. How

138 10 Additional Complexity Classes

can we support the conjecture that there is a problem in Σk − Σk−1? Just as
in the theory of NP-completeness it follows for Σk-complete problems L (see
Definition 5.1.1) that either Σk = Σk−1 or L /∈ Σk−1. Since we conjecture
that Σk �= Σk−1, we again have a strong indication that L /∈ Σk−1.

With methods similar to those used in the proof of Cook’s Theorem (The-
orem 5.4.3), we obtain the following result.

Theorem 10.4.7. Satk
cir is Σk-complete. ��

Since the proof of Theorem 10.4.7 presents no new methods or ideas, we
will omit it and conclude:

At every level Σk of the polynomial hierarchy there are complete prob-
lems. These complete problems are canonical candidates to separate
the complexity classes Σk−1 and Σk.

We have seen that PH = P follows from NP = P. This can serve as an
additional argument for the NP �= P-hypothesis. We can extend the question
of whether NP = P or NP �= P to oracle classes. We can ask whether NP(L) =
P(L) or NP(L) �= P(L). If L ∈ P, then this question is the same as the question
of whether NP = P or NP �= P. One might even wager the conjecture that either
for all languages L the relation NP(L) = P(L) holds or for all languages L the
relation NP(L) �= P(L) holds. But this is false. There are languages A and B
such that

NP(A) = P(A)

and
NP(B) �= P(B) .

What does this result mean? We are not really interested in the oracles A
and B, but we have here an indication about what sorts of proof methods
cannot be used to prove NP �= P. Any attempted proof of NP �= P that
uses techniques that would also imply NP(A) �= P(A) cannot succeed. There
have already been several unsuccessful attempts to prove NP �= P where it was
difficult to find the error in the proof. Nevertheless, one knew immediately that
they could not be correct because NP(A) �= P(A) would have followed by the
same techniques. Such restrictions on proof techniques limit the possible ways
to prove the NP �= P-conjecture. A concentration of effort on fewer methods
perhaps increases the chances of a solution of the NP �= P-question.

10.5 BPP, NP, and the Polynomial Hierarchy

The complexity classes BPP and NP play central roles in complexity theory:
BPP is the class of problems efficiently solvable using randomized algorithms,
and NP is the basis class for NP-completeness theory and contains many prob-
lems (in particular the NP-complete problems) that presumably are not ef-
ficiently solvable. What is the relationship between these two classes? It is

10.5 BPP, NP, and the Polynomial Hierarchy 139

worthwhile to recall the differences between the underlying randomized algo-
rithms of these two classes:

• NP algorithms: one-sided error, but large error-probability, e.g. 1− 2−n.
• BPP algorithms: error-probability severely limited, e.g. by 2−n, but two-

sided error.

So it is at least possible that these classes are incomparable with respect to
the subset relation. On the other hand, our intuition is that BPP is “not much
bigger” than P, and so the inclusion BPP ⊆ NP would add to our picture of
the complexity landscape without shaking the prevailing hypotheses such as
NP �= P. With respect to the polynomial hierarchy, the best known result is
that BPP ⊆ Σ2 ∩ Π2. We will present the proof of this result in such a way
that we can draw further consequences from it.

Theorem 10.5.1. BPP ⊆ Σ2 ∩ Π2.

Proof. Since by definition BPP = co-BPP, it is sufficient to show that BPP ⊆
Σ2. It then follows immediately that BPP = co-BPP ⊆ co-Σ2 = Π2.

So let L ∈ BPP be given. By Theorem 3.3.6 there is a randomized algorithm
for L with polynomial worst-case runtime and an error-probability bounded by
2−(n+1). Furthermore, we can assume that every computation path has length
p(|x|) and that p(n) is divisible by n. Since in the analysis that follows we will
need the inequality p(n)/n ≤ 2n, we will first deal with the at most finitely
many input lengths for which this is not the case. For these finitely many
inputs, a polynomial-time algorithm can simulate the randomized algorithm
on all computation paths and compute the correct result without losing the
property of being a polynomial-time algorithm.

For each input x of length n by our assumptions there are exactly 2p(n)

computation paths of the BPP algorithm. Because of the small error-rate, only
very few of these, namely at most 2p(n)−(n+1) many, can give the wrong result.
For an input x we will let A(x) be the set of computation paths r ∈ {0, 1}p(n)

on which the BPP algorithm accepts, and N(x) the set of remaining paths.
For all x ∈ L, A(x) is much larger than N(x). So for “significantly many”
x ∈ L, there must in fact be a common accepting computation path. On the
other hand, for x /∈ L, the set A(x) is very small. We want to take advantage
of this difference.

Let k(n) be a size to be specified later. We will abbreviate k(n) as k and
p(n) as p in order to simplify the formulas. Let B be the language of all
triples (x, r, z) consisting of an input x ∈ {0, 1}n for the decision problem
L, k computation paths r1, . . . , rk ∈ {0, 1}p, and a so-called computation
path transformation z ∈ {0, 1}p, for which ri ⊕ z is in A(x) for at least
one i. Here ⊕ stands for the component-wise exclusive or on vectors from
{0, 1}p. The function hz(r) := r⊕ z is a bijective function onto the set {0, 1}p

of computation paths. Since in deterministic polynomial time it is possible
to simulate a randomized algorithm with polynomially-bounded runtime on

140 10 Additional Complexity Classes

polynomially many specified computation paths, B ∈ P if k is polynomially
bounded.

But what good is the problem B? We want to characterize L in the fol-
lowing way in order to use Theorem 10.4.3 to show that L is a member of
Σ2:

L = {x | ∃ r = (r1, . . . , rk) ∈ {0, 1}pk ∀ z ∈ {0, 1}p : (x, r, z) ∈ B} . (10.2)

What intuition do we have that such a characterization is possible? We have
seen that many, but not necessarily all x ∈ L have a common accepting path.
By choosing sufficiently many computation paths r1, . . . , rk, we can hope that
for each x ∈ L each transformation z transforms at least one of them into an
accepting path. For x /∈ L, the number of accepting paths is so small that this
must fail to happen for at least one transformation z. This intuition can be
confirmed for the choice k := p/n.

First let x ∈ L and let R(x) be the set of “bad” r = (r1, . . . , rk), i.e., the
set of r for which there is a z ∈ {0, 1}p such that for all i, ri ⊕ z ∈ N(x).
By showing that |R(x)| < 2kp, we show the existence of a “good” r-vector
such that for x ∈ L the characterization above is correct. If wi = ri ⊕ z,
then wi ⊕ z = ri. Thus R(x) is the set of all (w1 ⊕ z, . . . , wk ⊕ z) such that
z ∈ {0, 1}p and wi ∈ N(x) for all i. So |R(x)| ≤ |N(x)|k · 2p. Since x ∈ L,
by the small error-probability we have |N(x)| ≤ 2p−(n+1). Because k = p/n it
follows that

|R(x)| ≤ 2(p−(n+1))·k · 2p = 2pk+p−nk−k = 2pk−k ≤
1

2
· 2pk .

This implies that at least half of the r-vectors are good.
Now suppose x /∈ L. Since |A(x)| ≤ 2p−(n+1), it follows that |N(x)| ≥

2p−2p−(n+1). Let r = (r1, . . . , rk) ∈ {0, 1}pk be given. We will show that there
is a z such that (x, r, z) /∈ B. For this to happen it must be that ri⊕z ∈ N(x)
for all i. We will let Zi(r) denote that set of all z such that ri ⊕ z ∈ N(x).
Because the ⊕-operator is bijective, |Zi(r)| = |N(x)| ≥ 2p−2p−(n+1). So there
are at most 2p−(n+1) z-vectors that are not contained in Zi(r). Thus there are
at most k ·2p−(n+1) z-vectors that are not contained in at least one Zj(r). Now
consider values of n for which k ≤ 2n. Then k · 2p−(n+1) ≤ 1

2 · 2p and there is
at least one z-vector that belongs to all Zi(r). For this z-vector ri ⊕ z ∈ N(x)
for all i, and thus (x, r, z) /∈ B.

This verifies that L has the characterization given in Equation 10.2 and
thus that L ∈ Σ2. ��

Our proof of Theorem 10.5.1 actually shows a slightly stronger result. We
have just shown that L ∈ Σ2 = NP(NP). The NP-oracle used was “∃z ∈
{0, 1}p such that (x, r, z) /∈ B”. The nondeterministic algorithm generates
r = (r1, . . . , rk) randomly. For x /∈ L, the error-probability is 0. For x ∈ L, at
most half of the r-vectors are bad and don’t accept x, so the error-probability
is bounded by 1/2. So the outer algorithm is an RP algorithm. With an obvious
definition, we have that L is actually contained in RP(NP).

10.5 BPP, NP, and the Polynomial Hierarchy 141

Definition 10.5.2. For a decision problem L the complexity class RP(L) con-
tains all decision problems L′ that can be decided by an RP algorithm with an
oracle for L. For a class of decision problems C the complexity class RP(C) is
the union of all RP(L) for L ∈ C.

ZPP(L), ZPP(C), BPP(L), BPP(C), PP(L), and PP(C) are defined analo-
gously.

Using this definition we can formulate the preceding discussion as the
following theorem.

Theorem 10.5.3. BPP ⊆ RP(NP) ∩ co-RP(NP). ��

So at least we know that BPP contains no problems that are “far” from NP.
While BPP ⊆ NP would be a new, far-reaching but not completely surpris-

ing result, a proof that NP ⊆ BPP would completely destroy our picture of the
complexity theory world. It is true that this would not immediately imply that
NP = P, but all NP-complete problems would be solvable in polynomial time
with small error-probability. That is, they would for all practical purposes be
efficiently solvable. We will show the implication “NP ⊆ BPP ⇒ NP ⊆ RP”.
Thus anyone who believes that NP ⊆ BPP must also believe that NP ⊆ RP and
thus that NP = RP. These consequences could shake the belief in NP ⊆ BPP,
should it be held. If NP = RP, then we can push error-probabilities of 1− 2−n

with one-sided error to error-probabilities of 2−n, still with one-sided error.
Unbelievable, but not provably impossible. On the way to our goal, we will
prove that BPP(BPP) = BPP. We know that P(P) = P and conjecture that
NP(NP) �= NP. This result shows that BPP as an oracle in a BPP algorithm is
not helpful. It is also another indication that BPP is different from NP.

Theorem 10.5.4. BPP(BPP) = BPP.

Proof. Let L ∈ BPP(BPP). Then there is an oracle L′ ∈ BPP such that L ∈
BPP(L′). Let A denote the outer BPP algorithm. Let its worst-case runtime
be bounded by the polynomial p1 and its error-probability by 1/6. (For the
latter we use Theorem 3.3.6.) Let A′ denote the BPP algorithm for L′. By
Theorem 3.3.6 we can assume that the error-probability for A′ is bounded
by 1/(6 · p1(|x|)). We replace the oracle queries with calls to the algorithm
A′. The result is a new randomized algorithm that runs in polynomial time
without any oracle. This algorithm can only make an error if the simulation
of A′ makes an error or the outer BPP algorithm makes an error despite a
correct result from the simulation of A′. So the error-probability of our new
algorithm is at most p1(|x|)/(6 · p1(|x|)) + 1/6 = 1/3 and we have designed a
BPP algorithm for L. ��

Remark 10.5.5. Since Theorem 3.3.6 also holds for all problems with unique
solutions, we can generalize Theorem 10.5.4 with the same proof to the class
of all BPP-problems with unique solutions. We will take advantage of this
generalization later.

142 10 Additional Complexity Classes

The following corollary hints that NP �⊆ BPP.

Corollary 10.5.6. NP ⊆ BPP⇒PH ⊆ BPP.

Proof. It suffices to show that for all k the inclusion Σk ⊆ BPP follows from
NP ⊆ BPP. An obvious, but not quite correct, proof of the inductive step is
the following:

Σk+1 = NP(Σk)

⊆ NP(BPP)

⊆ BPP(BPP)

⊆ BPP ,

using the inductive hypothesis, the assumption that NP ⊆ BPP, and The-
orem 10.5.4, respectively for the three implications. The problem with this
proof is that we have not shown that NP(C) ⊆ BPP(C) follows from NP ⊆ BPP.

As it turns out NP(BPP) ⊆ BPP(NP) (without any additional assumptions)
as we show in Lemma 10.5.7 below, and this suffices to complete our proof:

Σk+1 = NP(Σk)

⊆ NP(BPP)

⊆ BPP(NP)

⊆ BPP(BPP)

= BPP .��

Lemma 10.5.7. NP(BPP) ⊆ BPP(NP).

Proof. Let L ∈ NP(BPP). We will let n = |x| throughout this proof. This
means that there is a language B ∈ BPP and a polynomial p such that

x ∈ L⇔∃y ∈ {0, 1}p(n) : (x, y) ∈ B .

Furthermore, by Theorem 3.3.6, there must be a BPP algorithm AB for B with
runtime bounded by a polynomial q(n) and with error-probability bounded
by 2−p(n)−2. Let C be the language consisting of all triples (x, y, r) such that
y ∈ {0, 1}p(n), r ∈ {0, 1}q(n), and AB accepts (x, y) along computation path
r. Clearly C ∈ P.

Now we give a BPP algorithm for L using an NP-oracle: on input x, ran-
domly generate r ∈ {0, 1}q(n) and accept if and only if there is a y such that
(x, y, r) ∈ C. This algorithm can be carried out in polynomial time using
an NP-oracle since C ∈ P. It remains to show that the error-probability is
appropriately bounded.

If x ∈ L, then there is a yx such that (x, yx) ∈ B, and hence

Prob(our algorithm accepts x) = Probr(∃y : (x, y, r) ∈ C)

≥ Probr((x, yx, r) ∈ C)

≥ 1 − 2p(n)−2 .

10.5 BPP, NP, and the Polynomial Hierarchy 143

And if x /∈ L, then

∀y : Probr((x, y, r) ∈ C) ≤ 2−p(n)−2 ,

so
Probr(∃y : (x, y, r) ∈ C) ≤ 2p(n) · 2−p(n)−2 = 1/4 .

Thus our algorithm has two-sided error bounded by 1/4, and L ∈ BPP(NP).
��

Remark 10.5.8. Our proof of Lemma 10.5.7 can be generalized. (See, for ex-
ample, Chapter 2 of Köbler, Schöning, and Torán (1993).) It is also worth
noting that we are not using the full power of BPP(NP) in our proof, since
only very limited access to the NP-oracle is required. This will lead to the
definition of the BP(·) operator in Section 11.3.

Now we come to the result announced above.

Theorem 10.5.9. NP ⊆ BPP⇒NP = RP.

Proof. By definition RP ⊆ NP, so we only need to show that NP ⊆ RP follows
from NP ⊆ BPP. For this it is sufficient to show that if NP ⊆ BPP, then
L ∈ RP for some NP-complete problem L. All other problems in NP can be
polynomially reduced to L.

We consider three variants of GC. Recall that GC is the problem of de-
ciding for a graph G = (V, E) and a number k whether the vertices of G can
be assigned colors from a set of k colors in such a way that adjacent vertices
always have different colors and that GC is NP-complete (Theorem 6.5.2).
Colorings are arbitrary vectors c = (c1, . . . , cn) ∈ {1, . . . , n}n, where ci is the
color of the ith vertex. Thus we can order colorings lexicographically. We will
call a coloring legal if the two ends of each edge have different colors. LexGC

is the problem of computing f(G), the lexicographically least legal coloring
that uses the fewest number of colors possible. This is not a decision problem,
but it is a search problem with a unique solution. Finally, let MinGC be the
problem of deciding for (G, c) with c ∈ {1, . . . , n}n whether c ≥ f(G). In
instances of this problem c is not required to be a legal coloring of G.

The statement (G, c) ∈ MinGC is equivalent to

∃ c′ ∈ {1, . . . , n}n ∀ c′′ ∈ {1, . . . , n}n : (G, c, c′, c′′) ∈ B ,

where B contains the tuples (G, c, c′, c′′) such that

• c′ is a legal coloring of G,
• c′ ≤ c, and
• at least one of the following conditions holds:

– c′′ is not a legal coloring of G,
– c′′ ≥ c′,
– c′′ uses more colors than c′.

144 10 Additional Complexity Classes

Clearly B ∈ P, and by Theorem 10.4.3 this characterization of (G, c) ∈ MinGC

shows that MinGC ∈ Σ2.
By Corollary 10.5.6, if NP ⊆ BPP, then PH ⊆ BPP. So in particular,

MinGC ∈ BPP. Using binary search on {1, . . . , n}n, we can solve LexGC

with at most �log nn� = �n log n� queries to an oracle for MinGC, so
LexGC ∈ P(BPP). By Remark 10.5.5, LexGC can be solved in polynomial
time by a randomized algorithm A with error-probability bounded by 1/3.
From this we can construct an RP algorithm A′ for GC, proving the theorem.

The randomized algorithm A′ receives as input a graph G and a number k.
First A is simulated on input G. Let the result be c. A′ accepts input (G, k) if
and only if c is a legal coloring of G with at most k colors. The runtime of A′ is
polynomially bounded. If (G, k) /∈ GC, then there are no legal colorings of G
with at most k colors, and the input (G, k) will be rejected with probability 1.
If (G, k) ∈ GC, then A′ only fails to accept if A on input G made an error.
So A′ is an algorithm with one-sided error and an error-probability bounded
by 1/3. ��

The investigation of oracle classes has contributed to a better under-
standing of the relationships between classes we are interested in such
as NP, BPP, and RP.

11

Interactive Proofs

11.1 Fundamental Considerations

In this chapter we define complexity classes in terms of interactive proofs. The
motivation for these definitions is not immediately apparent, but the study of
interactive proofs results in complexity classes with interesting properties and
relationships to the complexity classes we already know. Much more impor-
tant, however, are the results regarding the complexity of particular problems
that can be obtained using this new perspective. In Section 11.3 we will present
the arguments that we have already alluded to that lead us to believe that
GraphIsomorphism is probably not NP-complete. In Section 11.4 we discuss
interactive proofs that are convincing but do not reveal the core of the proof.
Such proofs can be used in identification protocols. Finally, the PCP Theorem
(see Chapter 12) and the theory of the complexity of approximation problems
that arises from this theorem are based on the perspective introduced here,
namely of solving problems via interactive proofs. Before we introduce the
notion of interactive proof in Section 11.2 – a notion that goes back to Gold-
wasser, Micali, and Rackoff (1989) – we want to take a look at the notion of
proof more generally.

Even in mathematics, the notion of a “formal proof” is fairly new. Strictly
speaking, a formal proof requires a finite axiom system and a set of rules
for drawing inferences from the axioms and already proven theorems. The
advantage of this kind of proof is that it is easy to check the correctness of a
proposed proof.

But the disadvantages of formal proofs outweigh their advantages. Formal
proofs become unreadably long and obfuscate the important ideas of the proof.
In the strict sense, this book contains no formal proofs. In practice, proofs are
presented in such a way as to make them understandable. They are considered
accepted when experts responsible for refereeing the results for a technical
journal accept the proof. Often even these experts cannot understand the
proof, and so they do not accept it, even though they cannot find an error.
The referees then respond with questions for the authors in order to clarify the

146 11 Interactive Proofs

critical points in the proof. This interactive process continues until it becomes
clear whether or not the proof can be accepted.

Thus the current reality is closer to the historical notion of proof. Socrates
saw proofs as dialogues between students and teachers. The individuals in-
volved in these dialogues have very different roles. The teacher knows a lot,
and in particular knows the proof, while the student has more limited knowl-
edge. We want to use such a role playing scenario in order to define complexity
classes.

The role of the teacher will be played by a prover, Paul, and the role of the
student will be played by a verifier, Victoria. Their tasks can be described as
follows. For a decision problem L and an input x, Paul wants to prove that
x ∈ L, and Victoria must check this proof. If x ∈ L, then there should be a
proof that Victoria can efficiently check, but if x /∈ L, then Victoria should be
able to refute any proof attempt of Paul. The important difference between
Paul and Victoria is that Paul has unlimited computation time but Victoria
has only polynomial time to do her work.

In this model we can easily recognize the class NP. If L ∈ NP, then by
the logical characterization of NP there must be a language L′ ∈ P and a
polynomial p such that

L = {x | ∃y ∈ {0, 1}p(|x|) : (x, y) ∈ L′} .

Given a proposed proof y from Paul, Victoria’s polynomial verification algo-
rithm consists of checking whether (x, y) ∈ L′. If x ∈ L, then there is a proof
y that convinces Victoria. But if x /∈ L, then every proof attempt y will be
recognized as invalid.

If we consider classes like co-NP or Σk, the logical characterizations of
which make use of a universal quantifier, the situation is a little different. For
a characterization ∃y1∀y2∃y3 : (x, y1, y2, y3) ∈ L′ we can imagine a dialogue
in which Paul begins with a proof attempt y1 and in response to y2 from
Victoria finishes with the second part of the proof y3. Now Victoria can check
whether (x, y1, y2, y3) ∈ L′. If x ∈ L, then this dialogue will work. But if
x /∈ L, then it could be the case that there is only one value y2 for which
Paul would be unable to find a value y3 that leads Victoria to incorrectly
accept x. Since Victoria only has polynomial time, perhaps she will be unable
to compute this value y2. Clearly a random choice for y2 doesn’t help in this
case either. The situation is different, however, if there are sufficiently many
such y2 and we allow Victoria a small probability of making an error. After all,
incorrect proofs are occasionally published even in refereed technical journals.
So we will define interactive proofs in terms of randomized dialogues and small
error-probabilities.

11.2 Interactive Proof Systems 147

11.2 Interactive Proof Systems

Now that we have motivated the notion of interactive proofs and discussed
possible realizations, we come to the formal definition.

Definition 11.2.1. An interactive proof system consists of a communication
protocol between two parties P (Paul, prover) and V (Victoria, verifier), each
of which has a randomized algorithm. The communication protocol specifies
who sends the first message. After a number of communication rounds that
may depend on the input and on randomness, Victoria must decide whether
or not to accept the input. The computation time for Victoria is bounded by
a polynomial.

We use DP,V (x) to denote the random variable that describes whether x
is accepted by Victoria at the end of the protocol. DP,V (x) takes on the value
1 if x is accepted and 0 if x is rejected. The requirement that the algorithms
P and V abide by the communication protocol C will be tacitly assumed
throughout the following discussion.

Definition 11.2.2. A decision problem L belongs to the complexity class IP

if there is a communication protocol C and a randomized polynomial-time
bounded algorithm V with the properties that

• There is a randomized algorithm P such that for all x ∈ L,

Prob(DP,V (x) = 1) ≥ 3/4 .

• For all randomized algorithms P , if x /∈ L, then

Prob(DP,V (x) = 1) ≤ 1/4 .

A problem L ∈ IP belongs to IP(k) if the communication protocol in the defini-
tion above allows at most k communication rounds, that is, at most k messages
are exchanged.

We can always arrange that Paul sends the last message, since it doesn’t
help Victoria any to send a message to which she receives no reply. The allow-
able error-probability of 1/4 that appears in Definition 11.2.2 is to a certain
extent arbitrary. Without increasing the number of communication rounds
required, Paul and Victoria could carry out polynomially many simultaneous
dialogues. At the end, Victoria could use the majority of these polynomially
many individual “mini-decisions” as her decision for the expanded protocol.
So by Theorem 3.3.6, the error-probability can be reduced from 1/2− 1/p(n)
to 2−q(n), where p and q are polynomials. It is therefore sufficient to design
interactive proof systems with an error-probability 1/2 − 1/p(n) to obtain
interactive proof systems with error-probability 2−q(n).

In Section 11.1 we informally discussed an interactive proof system for
problems L ∈ NP. There we only required one communication round in which

148 11 Interactive Proofs

Paul sent y to Victoria. The decision of Victoria was to accept x if and only if
(x, y) ∈ L′. Since this decision protocol is error-free, it follows that NP ⊆ IP(1).

Since IP(1) is already “quite large”, we can suspect that IP is “really large”.
In fact, IP = PSPACE (Shamir (1992)). Here PSPACE denotes the class of all
decision problems for which there are algorithms that require only polynomi-
ally bounded storage space (see Chapter 13). Since we will show in Chapter 13
that all the complexity classes of the polynomial hierarchy belong to PSPACE,
IP is indeed a very large complexity class. We will concentrate our attention
on interactive proof systems with a small number of communication rounds.

11.3 Regarding the Complexity of Graph Isomorphism

Problems

To simplify notation, for the rest of this chapter we will use GI as an abbre-
viation for GraphIsomorphism. Recall that GI is the problem of determining
whether two graphs G0 = (V0, E0) and G1 = (V1, E1) are isomorphic. They
are isomorphic if they are identical up to the labeling of their vertices, that
is, if G1 is the result of applying a relabeling of the vertices to the graph G0.
The relabeling π : V0 → V1 must be bijective and satisfy

{u, v} ∈ E0 ⇔{π(u), π(v)} ∈ E1 .

It is simple to check whether |V0| = |V1|. Graphs with different numbers of
vertices cannot be isomorphic, so we will assume in what follows that V0 =
V1 = {1, . . . , n}, and thus the set of bijections π : {1, . . . , n} → {1, . . . , n} is
just the set Sn of permutations on {1, . . . , n}.

Since NP ⊆ IP(1), GI ∈ IP(1). The proof consists of giving a suitable
permutation π. Because of the asymmetry between Paul and Victoria and
the difficulty of realizing universal quantifiers in an interactive proof system,
most experts do not believe that co-NP ⊆ IP(1) or even that co-NP ⊆ IP(2).
In particular, it is believed that the co-NP-complete problems do not belong
to IP(2). For this reason, the following result showing that GI ∈ IP(2) is an
indication that GI is not NP-complete.

Theorem 11.3.1. GI ∈ IP(2).

Proof. The input consists of two graphs G0 and G1 with V0 = V1 = {1, . . . , n}.
Paul and Victoria use the following interactive proof system.

• Victoria randomly generates i ∈ {0, 1} and π ∈ Sn. Then she computes
H = π(Gi), the graph that results from applying the permutation π to
graph Gi, and sends the graph H to Paul.

• Paul computes j ∈ {0, 1} and sends it to Victoria.
• Victoria accepts (G0, G1) if i = j. Accepting (G0, G1) means that Victoria

believes the graphs G0 and G1 are not isomorphic.

11.3 Regarding the Complexity of Graph Isomorphism Problems 149

Victoria can do her work in polynomial time. A permutation π can be
represented as (π(1), . . . , π(n)). When generating a random permutation, one
must take care that each π(i) is different from π(1), . . . , π(i − 1). This can
be done by generating the �log(n − i + 1)� bits of a random integer k which
represents that for π(i) we should choose the (k + 1)st smallest as yet unused
number. With probability less than 1/2, k > n−i+1 and so is too large. In this
case we simply repeat the procedure up to n times. The probability that this
method fails to produce a permuation is then less than n/2n, which is so small
that Victoria can just arbitrarily choose whether or not to accept the pair of
graphs. By the robustness of the IP-classes with respect to small changes in
the error-probability, this small amount of error won’t make any difference.
We have discussed the procedure for generating a random permutation in
detail here, but in the future we will simply make statements like “generate
a random π ∈ Sn” without further commentary.

If G0 and G1 are not isomorphic, then H is isomorphic to Gi but not to
G1−i. So Paul can determine i by applying all π′ ∈ Sn to G0 and G1, and
comparing the results to H. He sets j = i and sends this value to Victoria
who will correctly accept (G0, G1). If Victoria decides to accept also in the
(rare) case that she is unable to generate a random permutation, then this
interactive proof system will have one-sided error.

If G0 and G1 are isomorphic, all three of the graphs that Paul has (G0,
G1, and H) are isomorphic. In fact there will be exactly as many π′ ∈ Sn

with H = π′(G0) as there are π′′ ∈ Sn with H = π′′(G1). We want to take
a closer look at this observation. Let G∗ = (V ∗, E∗) with V ∗ = {1, 2, 3} and
E∗ = {{1, 2}}. For π∗ defined by π∗(1) = 2, π∗(2) = 1, π∗(3) = 3, we have
π∗(G∗) = G∗. In general, the permutations π on G with π(G) = G form the
automorphism group of G, denoted Aut(G). These permutations form a group
under composition of functions. Since the order (size) of a subgroup always
divides the order of a group, n!/|Aut(G)| is an integer. We claim that there
are exactly |Aut(H)| many π′ ∈ Sn with H = π′(G0). Since there is such a
permutation π′, the set of permutations π∗ ◦ π′ such that π∗ ∈ Aut(H) form
|Aut(H)| many permutations of the desired kind. Furthermore, there cannot
be any more such permutations because if π(G0) = H and π′(G0) = H, then
π′ ◦ (π)−1(H) = H and π∗ := π′ ◦ (π)−1 ∈ Aut(H). So (π∗)−1 ∈ Aut(H) and
π = (π∗)−1 ◦ π′ belongs to the set of permutations we already have.

By definition Prob(i = 0) = Prob(i = 1) = 1/2, and the only ad-
ditional information for Paul is the random graph H. We have seen that
H is (independent of the value of i) a random graph from the set of
n!/|Aut(G0)| = n!/|Aut(G1)| graphs that are isomorphic to G0 and G1. So
Prob(i = 0 | H) = Prob(i = 1 | H) = 1/2 and Paul is in the situation of
having to correctly provide the outcome of a fair coin toss. No matter how
he decides, he will only succeed with probability 1/2. So the entire interac-
tive proof system has a one-sided error-probability just over 1/2. For non-
isomorphic graphs Victoria’s decision is correct, and for isomorphic graphs,
she makes an error with probability 1

2 + n
2n+1 . If we carry out the protocol

150 11 Interactive Proofs

twice and Victoria only accepts if both trials recommend acceptance, then
her decision for non-isomorphic graphs remains correct and for isomorphic
graphs the error-rate is approximately 1/4. The number of communication
rounds does not increase, since in each round the subprotocol can be carried
out twice. ��

In the definition of interactive proof systems we combined nondetermin-
ism and randomization with limited two-sided error, as we discussed in Sec-
tion 11.1. The complexity class BPP(NP) also combines nondeterminism and
randomization (see Definition 10.5.2). In this case, a BPP algorithm may make
repeated queries to an NP-oracle. In particular, the oracle answer may be
negated and so BPP(NP) = co-BPP(NP). If instead we want to think of ran-
domization as a “third quantifier” in addition to ∃ and ∀, then we want to
rule out the negation of the oracle answer. This idea leads to the following
definition of the operator BP(·) on a complexity class C:

Definition 11.3.2. A decision problem L belongs to BP(C) if there is a de-
cision problem L′ ∈ C with the following properties, where r ∈ {0, 1}p(|x|) for
some polynomial p and the probabilities are with respect to the choice of r:

• If x ∈ L, then Probr((x, r) ∈ L′) ≥ 3/4.

• If x /∈ L, then Probr((x, r) ∈ L′) ≤ 1/4.

It follows immediately from this definition that BP(C) ⊆ BPP(C).
We can characterize BP(NP) as follows: There is a language L′ ∈ P and a

polynomial p describing the lengths of r and y in dependence upon |x| such
that

• if x ∈ L, then Probr(∃y : (x, r, y) ∈ L′) ≥ 3/4;

• if x /∈ L, then Probr(∃y : (x, r, y) ∈ L′) ≤ 1/4.

Note that our proof that NP(BPP) ⊆ BPP(NP) (Lemma 10.5.7) actually
showed that NP(BPP) ⊆ BP(NP).

While for the class BP(NP) the entire computation time is polynomially
bounded, for IP(2), Paul has unlimited time. The requirements regarding error-
probability are the same for the two classes, so the following result is not
surprising.

Theorem 11.3.3. BP(NP) ⊆ IP(2).

Proof. Victoria and Paul use the characterization for a language L ∈ BP(NP)
given following Definition 11.3.2.

• Victoria randomly generates r ∈ {0, 1}p(|x|) and sends r to Paul.
• Paul computes a y ∈ {0, 1}p(|x|) and sends y to Victoria.
• Victoria accepts if (x, r, y) ∈ L′.

11.3 Regarding the Complexity of Graph Isomorphism Problems 151

Since L′ ∈ P, Victoria can do her work in polynomial time. For all y ∈
{0, 1}p(|x|) Paul can check the property (x, r, y) ∈ L′. If he finds a suitable y,
he sends it to Victoria. If x ∈ L, this succeeds with probability at least 3/4;
but if x /∈ L, then this succeeds with probability at most 1/4. Thus L ∈ IP(2).

��

The interactive proof system used in the proof of Theorem 11.3.3 can also
be described in the form of a fairy tale. King Arthur gives the wizard Merlin
a task (x, r). Merlin is supposed to find y with (x, r, y) ∈ L′. This is a task
that normal people cannot do in polynomial time, but Merlin is usually able
to do it – even wizards must and can live with exponentially small error-
probabilities. This view of BP(NP) has led to the names Arthur-Merlin game
for this type of proof system and AM for the complexity class BP(NP).

By Theorem 11.3.3, a proof that GI ∈ BP(NP) would be an even stronger
indication that GI is not NP-complete. It is not known whether GI /∈ NPC

follows from NP �= P. But from GI ∈ BP(NP) and the assumption that Σ2 �= Π2

(see Chapter 10) it follows that GI is not NP-complete. We will show this in
Theorems 11.3.4 and 11.3.5.

Theorem 11.3.4. GI ∈ BP(NP).

Proof. First we outline the basic ideas in the proof. Then we will go back and
fill in the details. In order to show that GI ∈ BP(NP), we are looking for a
characterization of GI that matches Definition 11.3.2. Let x = (G0, G1). We
can assume that G0 and G1 are defined on the vertex set {1, . . . , n}. We will
use ≡ to represent graph isomorphism. So we need to come up with a y that
contains enough information to distinguish between G0 ≡ G1 and G0 �≡ G1.

The basis for this distinction will be the sets

Y (Gi) := {(H, π) | π ∈ Aut(H) and H ≡ Gi} ,

and
Y := Y (G0, G1) := Y (G0) ∪ Y (G1) .

|Y | can be used to determine whether G0 ≡ G1 or G0 �≡ G1. In the proof
of Theorem 11.3.1 we saw that there are n!/|Aut(G0)| many graphs H such
that H ≡ G0, so |Y (Gi)| = n! for any graph Gi with n vertices. Furthermore,
if G0 ≡ G1, then Y (G0) = Y (G1), so |Y | = |Y (G0)| = n!. But if G0 �≡ G1,
then Y (G0) ∩ Y (G1) = ∅, so |Y | = |Y (G0)| + |Y (G1)| = 2n!.

Of course, we don’t see how to compute |Y | efficiently. It suffices, however,
to distinguish between the cases |Y | = n! and |Y | = 2n!, which means that an
approximate computation of |Y | would be enough, and we may even allow a
small error-probability. At the end of our proof we will see that the difference
between n! and 2n! is too small. So instead of Y we will use Y ′ := Y × Y ×
Y × Y × Y . Then |Y ′| = (n!)5, if G0 ≡ G1, and |Y ′| = 32 · (n!)5, if G0 �≡ G1.
The vector y from the characterization following Definition 11.3.2 will be made
from strings y′ and y′′. The string y′ must belong to Y ′, it is required that y′ be

152 11 Interactive Proofs

a 0-1 string of fixed length, and we must be able to check whether y′ ∈ Y ′. The
vector y′′ will be another 0-1 string that will help us check whether y′ ∈ Y ′.
A necessary condition for (x, r, y) ∈ L′ will therefore be that y = (y′, y′′),
where y′ describes graphs H1, . . . , H5 and permutations π1, . . . , π5 and that
y′′ describes permutations α1, . . . , α5 such that πi ∈ Aut(Hi) and Hi ≡ αi(G0)
or Hi ≡ αi(G1). These conditions can be checked in polynomial time.

Let the length of the description of y′ be l. We will only consider such
y′ ∈ {0, 1}l that are contained in Y ′. For reasons that will be clear shortly,
we assume that 0l /∈ Y ′, which is certainly the case for obvious descriptions
of graphs and permutations.

It’s about time we describe how to obtain a randomized estimate for |Y ′|.
For this we will make use of a family of hash functions on the universe U =
{0, 1}l with values in {0, 1}k for a value of k to be specified later. For a random
choice of hash function from the family and for every z ∈ {0, 1}l with z �= 0l

we want to have the following property:

Probh(h(z) = 0k) = 2−k .

We will be interested in the probability of the event “∃y′ ∈ Y ′ : h(y′) = 0k”. It
is obvious that this probability grows with |Y ′|. Furthermore, for z, z′ ∈ {0, 1}l

such that z �= z′, z �= 0l, and z′ �= 0l, we want the events “h(z) = 0k” and
“h(z′) = 0k” to be independent. All probabilities are with respect to the
random choice of a hash function.

Now we flesh out this proof idea. Our family of hash functions contains
for each k× l-matrix W over {0, 1} the hash function hW (z) = W · z, where z
is interpreted as a column vector and the computations are carried out in Z2,
i.e., modulo 2. The random matrix W takes the place of the random vector r
in the characterization following Definition 11.3.2. Finally, L′ contains all (x =
(G0, G1), r = W, y = (y′, y′′)) such that y′ ∈ Y ′, y′′ contains the information
described above for helping to check whether y′ ∈ Y ′, and W ·y′ = 0k. By the
preceding discussion it is clear that L′ ∈ P, so it only remains to check the
probability part of the characterization following Definition 11.3.2.

First we investigate the random hash function hW (z) = W · z. Here it will
become clear why we must avoid the case that z = 0l. We know for sure that
hW (0l) = 0k. Now let z �= 0l and zj = 1. The i-th bit of hW (z) is given by

wijzj +
∑
m�=j

wim · zm = wij +
∑
m�=j

wim · zm

with sums taken mod 2. Since the values of hW (z) for wij = 0 and wij = 1
are different, the ith bit of hW (z) takes on the values 0 and 1 with probability
1/2 each. Since the rows of W are chosen independently of each other, every
value from {0, 1}k (including 0k) has probability 2−k of being equal to hW (z).
Finally, if z �= z′, z �= 0l, and z′ �= 0l, then the random vectors hW (z) and
hW (z′) are independent. Suppose zj �= z′j . Then wijzj = wijz

′
j if and only

if wij = 0, and therefore this event has probability 1/2. Independent of the

11.3 Regarding the Complexity of Graph Isomorphism Problems 153

values of the sum of all wimzm with m �= j and the sum of all wimz′m with
m �= j, the ith bits of hW (z) and hW (z′) agree with probability 1/2. Once
again the statement for vectors follows from the fact that the rows of W are
chosen independently.

The next step is to investigate the random number S of all y′ ∈ Y ′ with
hW (y′) = 0k. The random variable S is the sum of the |Y ′| random vari-
ables S(y′), where S(y′) = 1 if hW (y′) = 0k and otherwise S(y′) = 0. By
Remark A.2.3 it follows that E(S(y′)) = 2−k and by Theorem A.2.4 it follows
that E(S) = |Y ′| ·2−k. Since S(y′) only takes on values 0 and 1, the variance is
easy to compute straight from the definition: V (S(y′)) = 2−k ·(1−2−k) ≤ 2−k.
So by Theorem A.2.7, V (S) ≤ |Y ′| · 2−k = E(S). Since |Y ′| is different in the
two cases G0 ≡ G1 and G0 �≡ G1, it is good that |Y ′| shows up as a factor in
the expected value of S. Furthermore, V (S) is not very large.

The probability that we are interested in is

Prob(∃y = (y′, y′′) : (x = (G0, G1), r = W, y = (y′, y′′)) ∈ L′) .

If y′ ∈ Y ′, then there is also a corresponding y′′. So we can represent the event
more succinctly: we are interested in Prob(∃y′ ∈ Y ′ : hW (y′) = 0k), or using
the notation used above, in Prob(S ≥ 1). This probability should be large if
E(S) is somewhat larger than 1, and small if E(S) is somewhat smaller than
1. The choice of k := �log(4 · (n!)5)� achieves this.

If G0 ≡ G1, then

E(S) = (n!)5 · 2−�log(4·(n!)5)� ≤ 1/4 .

By the Markov Inequality (Theorem A.2.9) with t = 1,

Prob(S ≥ 1) ≤ E(S) ≤ 1/4 ,

and we obtain for (G0, G1) /∈ GI the desired small acceptance probability.
If G0 �≡ G1, then

E(S) = 32 · (n!)5 · 2−�log(4·(n!)5)�

≥ 32 · (n!)5 ·
1

2
· 2− log(4·(n!)5) = 4 .

Our goal is to show that Prob(S ≥ 1) ≥ 3/4, or equivalently that Prob(S =
0) ≤ 1/4. In order to be able to apply the Chebychev Inequality (Corol-
lary A.2.10), we use the fact that if S = 0, then |S − E(S)| ≥ E(S). We let
t := E(S) in the Chebychev Inequality. Then

Prob(S = 0) ≤ Prob(|S − E(S)| ≥ E(S))

≤ V (S)/E(S)2 .

Earlier we showed that V (S) ≤ E(S) and E(S) ≥ 4. From this it follows that

Prob(S = 0) ≤ 1/E(S) ≤ 1/4

154 11 Interactive Proofs

and so Prob(S ≥ 1) ≥ 3/4. For (G0, G1) ∈ GI this is the large acceptance
probability that was desired. All together we have characterized GI in such
a way that the statement GI ∈ BP(NP) has been proven according to Defini-
tion 11.3.2. ��

Theorem 11.3.5. If GI is NP-complete, then Σ2 = Π2.

Proof. For most parts of this proof we will find the operator notation of Chap-
ter 10 convenient. In order to show that Σ2 = Π2, by Lemma 10.4.2 it is
sufficient to show that Σ2 ⊆ Π2. So let L ∈ Σ2 and thus representable as
∃ · ∀ · P. If GI is NP-complete, then GI is co-NP-complete and the ∀-operator
can be replaced by an oracle for GI. By Theorem 11.3.4, GI ∈ BP(NP) and
we can make use of the characterization of BP(NP) that was discussed follow-
ing Definition 11.3.2. This means that there is a representation for L of the
form ∃ · BP ·∃ · P. Shortly we will show that from this it follows that there
is a BP ·∃ · P-representation. By Theorem 10.5.1 BPP ⊆ Π2 and BP ·P can be
replaced with ∀ · ∃ ·P. We can directly generalize the proof of Theorem 10.5.1
without any new ideas so that we can replace BP ·∃ · P with ∀ · ∃ · ∃ · P and so
with ∀ · ∃ · P. This representation proves that L ∈ Π2 and Σ2 ⊆ Π2.

It remains to show the transformation from a ∃(BP)∃P-representation into
a (BP)∃P-representation. If L has a ∃(BP)∃P-representation, then there is a
decision problem L′ ∈ P such that

x ∈ L ⇒ ∃y : Prob(∃z : (x, y, z, r) ∈ L′) ≥ 3/4 , and

x /∈ L ⇒ ∀y : Prob(∃z : (x, y, z, r) ∈ L′) ≤ 1/4 ,

where the probabilities above are with respect to the random vector r, and for
n = |x| the vectors y, z, and r have length p(n). By repeating the procedure
and taking a majority vote, we can reduce the error-probability to 2−p(n)/4.
This makes z and r longer, but not x and y.

The statement “∃y : Prob(∃z : (x, y, z, r) ∈ L′) ≥ 1−2−p(n)/4” means that
this y exists independent of the random vector r. From this it follows that

x ∈ L ⇒ Prob(∃(y, z) : (x, y, z, r) ∈ L′) ≥ 1 − 2−p(n)/4 ≥ 3/4.

In the second case (x /∈ L) we cannot argue in the same way. Assume for
the sake of contradiction that there is an x /∈ L with

Prob(∃(y, z) : (x, y, z, r) ∈ L′) > 1/4.

Then for more than a quarter of the r’s there is a “good pair” (y, z). We
write this as a table of the selected random vectors r with a respective good
(y, z)-pair for each of these r’s. Since there are only 2p(n) vectors y, by the
pigeonhole principle there is a y∗ such that y∗ occurs in the y-column for at
least a fraction of 2−p(n) of the r’s in our table. This y∗ is then a good choice
for a fraction of more than 2−p(n)/4 of all r’s. That is, for an x /∈ L we have

11.4 Zero-Knowledge Proofs 155

∃y (namely y∗) : Prob(∃z : (x, y, z, r) ∈ L′) > 2−p(n)/4 .

This contradicts the characterization of x /∈ L given above for the error-
probability 2−p(n)/4. Thus the assumption must be false and we have

x /∈ L ⇒ Prob(∃(y, z) : (x, y, z, r) ∈ L′) ≤ 1/4.

Thus we have obtained a BP ·∃ · P-representation for L and the Theorem is
proven. ��

In the example of the graph isomorphism problem we have seen that the
consideration of the polynomial hierarchy, the characterization of its
complexity classes, and the investigation of interactive proof systems
have all contributed to the complexity theoretic classification of specific
problems. The hypothesis that GI is not NP-complete is at least as
well supported as the hypothesis that the polynomial hierarchy does
not collapse to the second level.

11.4 Zero-Knowledge Proofs

The underlying idea of an interactive proof system is that Paul provides Vic-
toria with enough information that she can check the proof with a small error-
probability. So, for example, to convince Victoria that two publicly available
graphs are isomorphic, Paul could send Victoria his secret π, the relabeling
of the vertices that shows the two graphs are isomorphic. In any interactive
proof system, Paul must send to Victoria some information related to the in-
put. So in this sense, there are no interactive proof systems that reveal “zero
knowledge”. On the other hand, if Victoria could have computed the infor-
mation sent by Paul herself in polynomial time and we consider polynomial
time to be available, then it is as if Paul had revealed no information. But in
such a case, Paul can’t do any more than Victoria, so he has no secret infor-
mation. Now let’s go a step further and allow Victoria expected polynomial
time. This means exponential time with correspondingly small exponential
probability. If Paul does not want to reveal any knowledge (for example, he
doesn’t want to reveal any information about his password), then he has to
assume that others are interested in this information. Among them are spies
who may eavesdrop on the conversation and Victoria, who may deviate from
the prescribed protocol if it helps her gain information from Paul. We will
not, however, allow the spies to interfere with the conversation and send or
modify messages. This all leads to the definition of zero-knowledge proofs.

Definition 11.4.1. Let P and V be randomized algorithms of an interactive
proof system for the decision problem L. This proof system has the perfect
zero-knowledge property if for every polynomial-time randomized algorithm

156 11 Interactive Proofs

V ′ that can replace V (that is, V ′ must send the same type of messages), there
is a randomized algorithm A with polynomially bounded worst-case expected
runtime that for each x ∈ L produces what is communicated between P and
V ′ with the same probabilities.

For problems in P, Victoria can compute all the information herself, so
perfect zero-knowledge proofs are only interesting for problems that lie outside
of P. It is not immediately clear that there are any perfect zero-knowledge
proofs for problems outside P, but for GI, which presumably does not belong
to P, we have the following:

Theorem 11.4.2. There is an interactive proof system for GI with the perfect
zero-knowledge property.

Proof. Let G0 and G1 be graphs so that Paul’s secret is a permutation π∗ with
G1 = π∗(G0). He would like to prove that G0 and G1 are isomorphic without
giving away any information about π∗ in the course of the conversation. The
trick is to generate a random graph H that is isomorphic to G0 and G1 and
later to give an isomorphism proving either that G0 and H are isomorphic or
that G1 and H are isomorphic. To keep Paul from cheating in the case that
G0 and G1 are not actually isomorphic, Victoria gets to decide later which
of the two isomorphisms Paul must reveal. These considerations lead to the
following interactive proof system:

• Paul randomly chooses i ∈ {0, 1} and π ∈ Sn, then he computes H :=
π(Gi) and sends H to Victoria.

• Victoria randomly selects j ∈ {0, 1} and sends j to Paul.
• Paul computes π′ ∈ Sn and sends π′ to Victoria.
• Victoria accepts if H = π′(Gj).

Victoria can complete her work in polynomial time. If G0 and G1 are
isomorphic, and G1 = π∗(G0), then Paul can get Victoria to accept the input
with certainty: If i = j, then Paul can choose π′ = π; if i = 1 and j = 0,
then H = π(G1) and G1 = π∗(G0), so H = π ◦ π∗(G0) and π′ = π ◦ π∗ will
work; finally, if i = 0 and j = 1, then H = π(G0) and G0 = (π∗)−1(G1),
so H = π ◦ (π∗)−1(G1), and π′ = π ◦ (π∗)−1 will work. If the two graphs
G0 and G1 are not isomorphic, Paul can still get Victoria to accept if i = j.
But if i �= j, then H and Gj are not isomorphic and there is no π′ that will
lead Victoria to accept. Since Prob(i �= j) = 1/2, the error-probability is 1/2,
and since the error is one-sided, we can reduce this to 1/4 just as we did in
Theorem 11.3.1.

In the conversation above, Victoria receives the triple (H, j, π′) as infor-
mation. In the case that G0 and G1 are isomorphic, H is a random graph that
is isomorphic to G0 and G1, j is a random bit, and π′ is a permutation such
that H = π′(Gj). Now let V ′ be an arbitrary polynomial-time randomized
algorithm that computes the bit j. Then we can describe the algorithm A
that simulates the communication as follows:

11.4 Zero-Knowledge Proofs 157

• Repeat until i = j:
– randomly generate i ∈ {0, 1} and π ∈ Sn,
– compute H := π(Gi),
– simulate V ′ for the situation in which Paul sent H and call the result

j.
• A outputs the result (H, j, π), where these are the values from the last

pass through the loop, i.e., the pass where i = j.

Each pass through the loop can be executed in polynomial time. Regardless
of how V ′ computes the bit j, the bit i is the result of a fair coin toss and
doesn’t affect the computation of j, since the distribution of H is the same
for i = 0 and i = 1. So i and j are the same with probability 1/2. So by
Theorem A.2.12, on average the loop must be executed 2 times, and the
expected runtime is polynomially bounded for each input. Since π ∈ Sn is
chosen at random, if G0 and G1 are isomorphic, then H is a random graph
isomorphic to G0 and G1. The pair (B, V ′) of algorithms computes a graph
H chosen uniformly at random from the set of graphs that are isomorphic
to G0 and G1, it computes a bit j according to V ′ and a permutation π′

such that H = π′(Gj). The algorithm A computes H according to the same
probability distribution as (B, V ′). Since A simulates V ′, it also computes j
according to the same probability distribution as (B, V ′). Finally, A outputs
some π such that H = π(Gi). Since i = j, this implies that H = π(Gj).
These considerations can be generalized to independent parallel runs of the
protocol. ��

Paul’s secret (password) in this example has the property that it is not
completely secure. The graphs G0 and G1 are public knowledge, and the
permutation π∗ with G1 = π∗(G0) is the secret or password. If someone could
compute a permutation π with G1 = π(G0), then he or she could pretend to
be Paul and would withstand the identification protocol and get Victoria to
accept. It would therefore be better to have an interactive proof system with
the perfect zero-knowledge property not for GI but for some NP-complete or
some even more difficult problem. We don’t know how to do that. However,
for NP-complete problems like HC, the problem of deciding if a graph has a
Hamiltonian circuit, there are interactive proof systems with a weaker zero-
knowledge property.

We assume the existence of a one-way function. A function f : {0, 1}∗ →
{0, 1}∗ is a one-way function if it is one-to-one and computable in polynomial
time, but it is not possible to compute information about the last bit of x
from f(x) in polynomial time. We will not give the formal definition here but
will assume that knowing f(x) is of no value if we are interested in the last
bit of x. One-way functions permit an efficient bit commitment. For example,
suppose Paul wants to leave a bit b as by a notary. The value remains secret,
but in case of a disagreement it can be determined what value b has. For this,
Paul generates a sufficiently long random bit sequence r and appends b to get
x. Then he computes and makes public f(x). In case of a disagreement, he

158 11 Interactive Proofs

must reveal x. Anyone can then apply f to x and compare the result to the
publicly available value of f(x). Paul can’t be deceitful since f is one-to-one.

Here is an example of how bit commitment might work in practice. A
sufficiently large prime number p is generated, and b is the parity of the bits
in p. There are sufficiently many prime numbers that we needn’t generate
too many random numbers and test them for primality before we succeed in
finding a prime. We have already indicated several times that Primes ∈ P.
Now a second smaller prime number q < p is randomly generated and the
product n = pq is made public. In case of a disagreement, the unique prime
divisors of n must be revealed, from which the parity of the bits of the larger
divisor can easily be computed. In order for this bit commitment to be secure,
we would have to assume that the factoring problem Fact cannot be solved
in polynomial time, and that b cannot be efficiently computed from n in some
other way.

Definition 11.4.3. An interactive proof system has the zero-knowledge prop-
erty under cryptographic assumptions if it has the perfect zero-knowledge prop-
erty under the assumption that one-way functions exist.

Theorem 11.4.4. The Hamiltonian circuit problem HC has an interactive
proof system with the zero-knowledge property under cryptographic assump-
tions.

Proof. In our zero-knowledge protocol for graph isomorphism, Paul provided
Victoria with a “scrambled” graph, and she could require Paul to “unscram-
ble” the graph to show that it was isomorphic to one of the two input graphs
of her choosing. This reveals Paul’s deception at least half of the time if the
two input graphs were not isomorphic. This time the rough idea is that Paul
will provide an encoded version of a scrambled graph. Victoria can require
Paul either to decode and unscramble the graph to show that it is isomorphic
to the input graph, or she can require him to decode (but not unscramble)
only a Hamiltonian circuit from the graph to show that such a circuit exists.

Let G be a graph for which Paul has secret knowledge of a Hamiltonian
circuit H. Let the vertex set of G be {1, . . . , n} and let H be described by an
edge list. The following interactive proof system is used:

• Paul selects a π ∈ Sn at random and computes π(G) and then puts the
edge set of π(G) in a random order. To describe π and the edge list π(G),
Paul sends Victoria a bit commitment for each bit.

• Victoria randomly chooses i ∈ {0, 1} and sends i to Paul.
• If i = 0, then Paul decodes all of his bit commitments. If i = 1, then Paul

only decodes the bit commitments for the bits describing the Hamiltonian
circuit π(H) in π(G).

• If i = 0, then Victoria accepts if Paul really did commit to a permutation
π′ ∈ Sn and the edge list of π′(G). If i = 1, then Victoria accepts if the
edges revealed by Paul form a Hamiltonian circuit on {1, . . . , n}.

11.4 Zero-Knowledge Proofs 159

Victoria can do her work in polynomial time. If G has a Hamiltonian
circuit, then Paul can follow the protocol and get Victoria to accept with
certainty. If G does not have a Hamiltonian circuit, Paul can still commit to
a pair (π, π(G)), but then he cannot fulfill the requirements if i = 1, since
π(G) has no Hamiltonian circuit. So at best, Paul can fulfill only one of the
two requirements. Since he must decide what to do before he knows what
i will be, he can only get Victoria to accept G with probability 1/2. The
error-probability can then be reduced to 1/4 as we have seen before.

In the conversation just described, with probability 1/2 Victoria receives
a random permutation π and the description of π(G), and with probability
1/2 she receives a description of π(H) for a Hamiltonian circuit H and some
random permutation π. Under the assumption that one-way functions exist,
the description of the bit commitments provides no usable information. The
other information she can produce herself with probability 1/2. A Hamiltonian
circuit H can be described as a permutation π∗ of the vertices {1, . . . , n}. For
a random π, π ◦ π∗ is also a random permutation. ��

Our investigation of interactive proof systems with the zero-knowledge
property shows that modern cryptographic procedures require complex-
ity theory as a foundation.

12

The PCP Theorem and the Complexity of

Approximation Problems

12.1 Randomized Verification of Proofs

In Chapter 11 interactive proof systems proved to be a useful tool. In this chap-
ter we will investigate probabilistically checkable proofs (abbreviated PCP).
With an appropriate restriction of resources we will obtain a new character-
ization of the complexity class NP. This characterization, the so-called PCP
Theorem, is more than astounding, and a proof of its correctness is too com-
plex to present here. In Section 12.2 we will prove a weaker result in order
to gain a glimpse of the possibilities of probabilistically checkable proofs. The
PCP Theorem is considered the most important result in complexity the-
ory since Cook’s Theorem. The theory of the complexity of approximation
problems based on classical NP-completeness results which we presented in
Chapter 8 doesn’t get very far. The PCP Theorem provides new methods
for investigating the complexity of approximation problems. In Section 12.3
we will look at two examples of inapproximability results – for Max-3-Sat

and Clique – and in Section 12.4 we will prove the APX-completeness of
Max-3-Sat.

In Section 11.2 we showed that NP ⊆ IP(1). The corresponding interactive
proofs were only interactive in a restricted sense. Paul sends a proof that
x ∈ L to Victoria who then checks the proof deterministically and without
error in polynomial time. If x ∈ L, then Paul can compute a proof that
convinces Victoria. If x /∈ L, then Victoria can expose any proof attempt as
unconvincing. But the class NP is not taking advantage of the full power that
IP(1) allows. Paul and Victoria are allowed to make use of randomness, and
Victoria is allowed an error-rate of 1/4. If Paul is only sending one message
(the proof) and has unlimited computational power, then randomness is of
no help to him: He can compute which proof attempt has the best properties
and deterministically select this best attempt.

In order to characterize NP, we further restrict Victoria’s resources. She
may still use a randomized algorithm, but randomness will not be an arbitrar-
ily available resource. The number of random bits allowed will be restricted.

162 12 The PCP Theorem and the Complexity of Approximation Problems

Furthermore, Victoria will no longer be allowed two-sided error (as in interac-
tive proofs) but must work with one-sided error. Specifically, co-RP-like errors
will be allowed, that is, error-probabilities of up to 1/2 for inputs that should
not be accepted. So far, the familiar characterizations of problems in NP would
still be allowed, without even making use of randomness. Now, however, we
restrict Victoria’s access to the proof. The proof is hidden, and Victoria –
based on her knowledge of the input and her random bits – may compute a
limited number of positions and ask that the bits of the proof in those po-
sitions be revealed. Victoria’s access to the proof is non-adaptive: She must
compute all the positions she wishes to read before reading any of them.

Definition 12.1.1. For r, q : N → N, an (r(n), q(n))-bounded probabilistic
proof-checker is a polynomial time algorithm V . For an input x of length n
and a proof P (a 0-1 vector), the algorithm V has access to x and a random
vector r ∈ {0, 1}O(r(n)). On the basis of this information, V computes up to
O(q(n)) positions and receives as additional information the values of the bits
of the proof P in those positions. Finally, the decision V (x, r, P) ∈ {0, 1},
whether x should be accepted or not, is computed.

Since the verifier Victoria has only polynomially bounded computation
time, she can read at most polynomially many random bits and proof bits.
Therefore, we only consider polynomially bounded functions r (random bits)
and q (query bits). We extend the definition to allow for r and q to be the
constant function 0, and generalize our O-notation so that O(0) is interpreted
as 0. Using resource-bounded probabilistic proof checkers we can define com-
plexity classes analogous to the classes defined using interactive proof systems.

Definition 12.1.2. A decision problem L belongs to the complexity class
PCP(r(n), q(n)) (probabilistically checkable proofs with O(r(n)) random bits
and O(q(n)) query bits), if there is an (r(n), q(n))-bounded probabilistic proof
checker V with the following properties:

• If x ∈ L, then there is a proof P (x) such that

Prob(V (x, r, P (x)) = 1) = 1 .

• If x /∈ L, then for all proofs P ,

Prob(V (x, r, P) = 0) ≥ 1/2 .

Once again the error threshold of 1/2 is to a certain extent arbitrary. Since
constant factors don’t matter when counting the number of random bits or
the number of query bits, we can perform constantly many independent proof
attempts simultaneously. We accept an input only if this is the decision of all
these proof attempts. In this way we can reduce the error-probability from any
constant δ < 1 to any constant ε > 0. We will let PCP(poly, q(n)) denote the
union of all PCP(nk, q(n)) for k ∈ N; PCP(r(n), poly) is defined analogously.

12.1 Randomized Verification of Proofs 163

Since we can consider the generation of the proof to be a nondeterministic
process and since we allow co-RP-like errors, the following characterizations of
P, NP, and co-RP come as no surprise.

Theorem 12.1.3.

• P = PCP(0, 0),
• NP = PCP(0, poly),
• co-RP = PCP(poly, 0).

Proof. Consider a decision problem L ∈ PCP(0, 0). Since q(n) = 0, Victoria
cannot read any of the proof. This is equivalent to saying there is no proof.
Furthermore, for all x /∈ L we must have Prob(V (x, r, P) = 0) = 1 (Since
there are no random bits, all “probabilities” are either 0 or 1.) So L ∈ P.

PCP(0, poly) allows arbitrarily long proofs, of which only polynomially
many bits may be read. Since there are no random bits, for each x the same bit
positions are always read, so the proof can be restricted to polynomial length,
and the entire proof can then be read. Once again, since there are no random
bits, no x /∈ L is accepted. So we obtain exactly the logical characterization of
NP: For x ∈ L, there is at least one proof of polynomial length that convinces
Victoria. For x /∈ L there is no proof that convinces her.

PCP(poly, 0) can again be described with a scenario without any proofs,
and we obtain exactly the characterization of co-RP. ��

Equally straightforward is the proof of the following theorem regarding
the nondeterministic simulation of an (r(n), q(n))-bounded probabilistic proof
checker.

Theorem 12.1.4. If L ∈ PCP(r(n), q(n)), then there is a nondeterministic
Turing machine that decides L in time 2O(r(n)+log n).

Proof. The nondeterministic Turing machine simulates the probabilistic proof
checker for all 2O(r(n)) possible assignments of the random bit vector. For each
assignment at most p(n) bit positions are computed in polynomial time p(n).
For all of the at most p(n)·2O(r(n)) = 2O(r(n)+log n) bit positions, the proof bits
are nondeterministically generated. Then for the 2O(r(n)) assignments of the
random bit vector, the computation of the proof checker is simulated. Finally
the input is accepted if the proof checker accepts for all the assignments of
the random bit vector. If x ∈ L, then there is a proof that causes the proof
checker to accept with probability 1, that is, for all assignments of the random
bit vector. If x /∈ L, then for each proof the input is rejected for at least half
of these assignments. So we obtain a nondeterministic algorithm for L. Since
each computation of the proof checker takes at most p(n) = 2O(log n) steps, the
runtime of the nondeterministic Turing machine is bounded by 2O(r(n)+log n).

��

As a corollary we obtain another characterization of NP.

164 12 The PCP Theorem and the Complexity of Approximation Problems

Corollary 12.1.5. NP = PCP(log n, poly).

Proof. The inclusion NP ⊆ PCP(log n, poly) follows from Theorem 12.1.3, and
the inclusion NP ⊇ PCP(log n, poly), from Theorem 12.1.4. ��

12.2 The PCP Theorem

Corollary 12.1.5 contains the statement NP ⊇ PCP(log n, 1). One might sus-
pect that PCP(log n, 1) is “much smaller” than NP. After all, what good are
only constantly many bits of a proof? This intuition, however, turns out to
be incorrect.

Theorem 12.2.1 (PCP Theorem). NP = PCP(log n, 1). ��

The history of the PCP Theorem was described in great detail by Goldreich
(1998). Feige, Goldwasser, Lovász, Safra, and Szegedy (1991) established the
connection between resource-bounded probabilistically checkable proofs and
inapproximability results. The PCP Theorem was proved in 1992 by Arora,
Lund, Motwani, Sudan, and Szegedy (the journal version appeared in 1998).
After that, the number of bit positions that needed to be read was reduced
in a number of papers. It is sufficient to read only nine bits of the proof and
then the error-probability is already bounded by 0.32. If the allowable error-
probability is raised to 0.76, then we can get by with three bits of the proof.
Variants of the PCP Theorem that allow for better inapproximability results
have also been presented (for example, in Bellare, Goldreich, and Sudan (1998)
and in Arora and Safra (1998)).

The proof of the PCP Theorem is too long and difficult to present here. It is
a big challenge to find a proof of this theorem that is “digestible” for students.
Those who don’t shy away from some hard work can find a complete proof
of the PCP Theorem that is clearly presented and well-written in the books
by Ausiello, Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and Protasi
(1999), and by Mayr, Prömel, and Steger (1998).

To show that NP ⊆ PCP(log n, 1), it suffices to show that some NP-complete
problem like 3-Sat belongs to PCP(log n, 1). To see how reading only con-
stantly many bits can help a probabilistic proof checker solve an NP-complete
problem we want to give the proof of the following weaker theorem.

Theorem 12.2.2. 3-Sat ∈ PCP(n3, 1).

Proof. Suppose we are given an instance of 3-Sat that consists of clauses
c1, . . . , cm over the variables x1, . . . , xn. A classical proof of the satisfiability
of the clauses consists of giving an assignment a ∈ {0, 1}n that satisfies all
the clauses. Each bit ai is very “local” information; it only deals with the
value of xi. A probabilistically checkable proof of which only a few bits may
be read should have the property that every bit contains a little information

12.2 The PCP Theorem 165

about each ai. The information about a should be spread over the entire
proof. Of course, we are thinking about the case when there is a satisfying
assignment a. In this case we can think of the proof P (a) corresponding to
each satisfying assignment a as a coding of a. We must also discuss how we
can recognize from P (a′) that a′ is not a satisfying assignment. And later
we must consider how to deal with proof attempts P ′ that are different from
P (a′) for all a′ ∈ {0, 1}n. Here we will only give an indication of the most
important ideas. If P ′ is very different from all P (a′) then we will discover
this with sufficiently high probability. Otherwise we want to “correct” P ′ into
some P ′(a) and work with P ′(a) instead. So our code for each a ∈ {0, 1}n

must allow for efficient error correction (error-correcting codes).
The basis of our considerations is an arithmetization of the 3-Sat formula.

The positive literals xi will be replaced by 1− xi, the negative literals xi will
be replaced by xi, disjunctions will become products, and conjunctions will
become sums. So, for example,

(x1 + x2 + x3) ∧ (x1 + x2 + x4) −→ (1− x1) · x2 · (1− x3) + x1 · x2 · (1− x4) .

It would have been more obvious to use a dual representation, but this way
the degree of the resulting polynomial p is bounded by the number of literals
per clause – in our case 3.

The polynomial p has the following properties. If a satisfies a clause, then
the corresponding term is 0, while the term has value 1 for every non-satisfying
assignment. So p(a) is the number of unsatisfied clauses. We will see that it
is advantageous to carry out all of our computations in Z2. Then p(a) only
indicates if the number of unsatisfied clauses is odd or even. If p(a) = 1,
then we know with certainty that a does not satisfy all of the clauses, but if
p(a) = 0, then we cannot be sure that a is a satisfying assignment. For some
non-satisfying assignments the error-probability would then be 1. The idea
now is to randomly ignore some of the clauses. If the number of unsatisfied
clauses is even and we ignore some of the clauses, then the chances are good
that the number of remaining clauses that are unsatisfied will be odd.

Formally, let pi be the polynomial representing clause ci. For a random
bit vector r ∈ {0, 1}m, let pr be the sum of all pi with ri = 1, that is,
pr = r1p1 + · · · + rmpm. For a satisfying assignment a, pi(a) = 0 for all i,
and thus pr(a) = 0 for all r. For non-satisfying assignments a, pr(a) takes on
the values 0 and 1 with probability 1/2. We already used this property in the
proof of Theorem 11.3.4 (GI ∈ BP(NP)), but we repeat the argument. Since
a is not a satisfying assignment, there is a j with pj(a) = 1. Independent of
the sum of all ripi(a) for i �= j, this value becomes 0 or 1 with probability
1/2 each when we add rjpj(a) = rj . So checking whether pr(a) = 0 has the
desired properties. If a is a satisfying assignment, then pr(a) = 0 for all r. If a
is not a satisfying assignment, then the probability that pr(a) = 0 is exactly
1/2. Of course, in order to compute pr(a), Victoria must also know a.

Now we will reverse the situation for Victoria. As we have described things
up until now, she knows pr (the 3-Sat-formula) but not the input value a (a

166 12 The PCP Theorem and the Complexity of Approximation Problems

variable assignment) for pr(a). We will now compute three linear functions
La

1 , La
2 , and La

3 each depending on a. The function table of these functions
will be the code for the proof a. Of course, Victoria doesn’t know a, but she
should be able to compute in polynomial time from p and r input vectors
b1, b2, and b3 such that from La

1(b1), La
2(b2), and La

3(b3) she can compute the
value of pr(a). She obtains the values La

1(b1), La
2(b2), and La

3(b3) by reading
certain portions of the proof, i.e., the code for a.

In order to learn more about the polynomial pr, let’s consider an arbitrary
polynomial q : {0, 1}n → {0, 1} with degree at most 3. If we expand q, it will
consist of the following summands:

• cq ∈ {0, 1}, the constant term,
• terms of the form xi for i ∈ I1

q ,
• terms of the form xixj for (i, j) ∈ I2

q , and
• terms of the form xixjxk for (i, j, k) ∈ I3

q .

Since we are working in Z2, the coefficients are all either 0 (the term does
not appear in the sum) or 1 (the term appears and the corresponding tuple
belongs to the Iq-set of the appropriate degree). Now we define

• La
1 : Zn

2 → Z2 by La
1(y1, . . . , yn) :=

∑
1≤i≤n

aiyi,

• La
2 : Zn2

2 → Z2 by La
2(y1,1, . . . , yn,n) :=

∑
1≤i,j≤n

aiajyi,j , and

• La
3 : Zn3

2 → Z2 by La
3(y1,1,1, . . . , yn,n,n) :=

∑
1≤i,j,k≤n

aiajakyi,j,k.

By definition La
1 , La

2 , and La
3 are linear. They have function tables of length

2n, 2n2

, and 2n3

, so the code for a also has length 2n + 2n2

+ 2n3

and consists
of the concatenation of the three function tables. For a given q, in polynomial
time Victoria can compute cq, I1

q , I2
q , and I3

q . In addition she can compute the
characteristic vectors c1

q, c2
q, and c3

q of I1
q , I2

q , and I3
q . So, for example, bit (i, j)

of c2
q is 1 if and only if (i, j) ∈ I2

q , otherwise it is 0. Victoria reads the values
La

1(c1
q), La

2(c2
q), and La

3(c3
q) in the codeword for a. Finally, she computes

cq + La
1(c1

q) + La
2(c2

q) + La
3(c3

q).

The claim is that in so doing, Victoria has computed q(a). Clearly the
constant term cq is correct. Furthermore,

La
2(c2

q) =
∑

1≤i,j≤n

aiaj(c
2
q)i,j =

∑
(i,j)∈I2

q

aiaj .

La
2(c2

q) takes care of the terms of q that are of degree 2. The analogous state-
ments hold for La

1 and degree 1, and for La
3 and degree 3. So we have found

an encoding of a ∈ {0, 1}n that is very long but can be used by Victoria to
compute pr(a) in polynomial time using three selected positions.

12.2 The PCP Theorem 167

Now we know what the proof should look like when there is a satisfying
assignment: A satisfying assignment a is selected and the function tables for
La

1 , La
2 , and La

3 are used as the proof. We will check the proof by computing
pr(a) for constantly many randomly chosen r and accept if they all have the
value 0. For each of these tests it suffices to read three bit positions. The
number of random bits is bounded by O(n3) since 3-Sat formulas without
trivial clauses and without repeated clauses can have at most 2n + 4 ·

(
n
2

)
+

8 ·
(
n
3

)
= O(n3) clauses and r describes a random choice of clauses. The error-

probability for clause sets that are not satisfied is 1/2 for each test, as we
discussed above. At least that is the case for proofs of the type described. But
in the case of unsatisfiable clause sets, we must react reasonably to all proofs.
We will assume that these proofs have the “correct” length since we will never
read any of the extra bits in a longer proof anyway, and shorter proofs simply
offer additional chances to detect that they are undesirable.

So how are these proofs checked? We will use four modules:

• a linearity test,
• a function evaluator,
• a consistency test, and
• a proof verifier.

The linearity test serves to check whether a function table is describing a
linear function. We will describe how this can be done with one-sided error
reading only constantly many bits. But this test cannot work as desired if
the proof merely includes the function table, since if the table contains only a
single value that deviates from a linear function, then this will be detected with
only a very small probability. We will therefore make a distinction between
linear, almost linear, and other functions. These terms will be formalized later.
We must be able to detect the “other functions”, but we must accept that
the “almost linear” functions may pass the linearity test. Linear functions will
always pass the linearity test.

It will turn out that each almost linear function is “close” to exactly one
linear function. So we will attempt to interpret the proof as if it contained this
close linear function in place of the almost linear function it actually contains.
The function evaluator’s job is to compute for input values an estimate of
the function value of this nearby linear function. If the function is linear,
this estimate will always be correct. For almost linear functions the error-
probability can be bounded by a constant α < 1. Furthermore, by using
repeated independent estimates and taking a majority decision, we can reduce
the error-probability. The function evaluator will read only constantly many
bits.

But there is another problem. It is not enough that the proof contain
function tables of three linear functions. Since the functions La

1 , La
2 , and La

3

all depend on a, they are related. The consistency test checks whether the
three linear functions being considered (among them possibly the corrected
versions of almost linear functions) are consistent, that is, if they come from

168 12 The PCP Theorem and the Complexity of Approximation Problems

the same input a. For consistent linear functions La
1 , La

2 , and La
3 the test

makes no errors. Inconsistent triples of linear or almost linear functions will
be detected with constant error-probability β < 1. Once again, only constantly
many bits will be read.

Finally, the proof verifier reads constantly many bits and tests as described
above whether pr(a) = 0 for random bit vectors r. If the proof contains La

1 , La
2 ,

and La
3 , then the value of pr(a) is correctly computed. Otherwise the error-

probability can be bounded by a constant γ < 1.
All together the proof (La

1 , La
2 , La

3) for a satisfying assignment a is always
accepted. For unsatisfiable clause sets, a proof can be accepted if at least one
of the following occurs:

• One of the three linearity tests fails to detect that one of the functions is
not even almost linear.

• The consistency test fails to detect a triple of functions that are inconsis-
tent. For this almost linear functions are corrected to linear functions.

• All the computed pr(a) have the value 0. Once again, almost linear func-
tions are corrected to linear functions.

• One of the many function evaluations produces an incorrect value.

It is important to note that the function evaluator is used in the other
modules. We will allow each linearity test an error-probability of 1/18, i.e., a
combined error-probability of 1/6. The consistency test – under the assump-
tion that the linearity tests make no errors – is allowed an error-probability
of 1/6. That leaves an error-probability of 1/6 for the proof verifier – under
the assumption that the other tests are all error-free. The proof verifier reads
three bits. If we permit the function evaluator an error-probability of 1/10,
then for unsatisfiable clause sets a value of 0 is computed for pr(a) only if
pr(a) = 0 (probability 1/2) or a function evaluation produces an incorrect
value. So the overall error-probability of the proof verifier is bounded by 4/5.
Nine independent repetitions reduce this error-probability to less than 1/6.
Similar arguments allow us to compute the corresponding parameters for the
other modules. So it suffices to show that every test has an error-probability
bounded by some constant less than 1 and can be computed with the help of
constantly many proof bits and O(n3) random bits in polynomial time. Then
the PCP verifier can be made by assembling these modules.

We begin with the linearity test. Since we are working in the field Z2,
f : Zm

2 → Z2 is linear if and only if f(x + y) = f(x) + f(y) for all x, y ∈ Zm
2 .

We will say that a function f is δ-close to a function g if under the uniform
distribution on Zm

2 , Probx(f(x) �= g(x)) ≤ δ. We will use the subscript on
Prob to denote which element was chosen at random, always assuming a
uniform distribution. The linearity test works as follows:

• Choose independent and random x, y ∈ Zm
2 and only consider f to be

non-linear if f(x + y) �= f(x) + f(y).

This test has the following properties:

12.2 The PCP Theorem 169

• If f is linear, it will pass the linearity test.
• If δ < 1/3 and f is not δ-close to any linear function, then f passes the

test with probability less than 1 − δ/2.

The first property is clear. The second property can be equivalently for-
mulated as

• From Probx,y(f(x + y) �= f(x) + f(y)) ≤ δ/2 it follows that f is δ-close to
some linear function g.

We will prove this claim by defining a linear function g and showing that f is
δ-close to g. To define g(a) we consider f(a + b) − f(b) for all b ∈ Zm

2 . For a
linear function f this will always yield the value f(a). So we let g(a) be the
value from {0, 1} that occurs most frequently in the list of all f(a + b)− f(b).
In case of an equal number of 0’s and 1’s, we let g(a) = 0. It remains to show
that

• g is δ-close to f , and
• g is linear.

The first property is proved by contradiction. Suppose that f and g are
not δ-close. Then

Probx(f(x) �= g(x)) > δ .

By the construction of g, for every a ∈ Zm
2

Proby(g(a) = f(a + y) − f(y)) ≥ 1/2 .

So it follows that

Probx,y (f(x + y) − f(y) �= f(x))

≥ Probx,y (f(x + y) − f(y) = g(x) ∧ g(x) �= f(x))

=
∑

a∈Z
m
2

2−m · Proby (f(a + y) − f(y) = g(a) ∧ g(a) �= f(a)) .

For every a, either g(a) = f(a) or g(a) �= f(a). In the first case the probability
we are considering is 0, and in the second case the condition g(a) �= f(a) can
be left out. So

Probx,y (f(x + y) − f(y) �= f(x))

≥ 2−m ·
∑

a∈Z
m
2

g(a) �=f(a)

Proby (f(a + y) − f(y) = g(a))

≥ 2−m ·
∑

a∈Z
m
2

g(a)�=f(a)

1

2
> δ/2 ,

170 12 The PCP Theorem and the Complexity of Approximation Problems

contradicting the assumption that Probx,y(f(x + y) �= f(x) + f(y)) ≤ δ/2.
The last inequality follows since from Probx(f(x) �= g(x)) > δ it follows that
more than δ · 2m of all a ∈ Zm

2 have the property that g(a) �= f(a).
For the proof of the linearity of g we investigate

p(a) := Probx(g(a) = f(a + x) − f(x)) .

By the construction of g, p(a) ≥ 1/2. We will show that, in fact, p(a) ≥ 1− δ.
Applying the assumption that

Probx,y(f(x + y) �= f(x) + f(y)) ≤ δ/2

to x + a and y and also to x and y + a, and noting that for a random choice
of x ∈ Zm

2 , x + a is also a random bit vector from Zm
2 yields

Probx,y (f(x + a) + f(y) �= f(x + a + y)) ≤ δ/2

and
Probx,y (f(x) + f(y + a) �= f(x + a + y)) ≤ δ/2 .

The probability of the union of these events is bounded above by δ, and the
probability of the complement is bounded below by 1 − δ. By DeMorgan’s
laws, this is the intersection of the events f(x + a) + f(y) = f(x + a + y)
and f(x) + f(y + a) = f(x + a + y), in particular a subset of the event
f(x + a) + f(y) = f(x) + f(y + a). Thus

Probx,y (f(x + a) + f(y) = f(x) + f(y + a)) ≥ 1 − δ .

In order to take advantage of the independence of the selection of x and y, we
write this equation as f(x + a) − f(x) = f(y + a) − f(y). Then

1 − δ ≤ Probx,y (f(x + a) − f(x) = f(y + a) − f(y))

=
∑

z∈{0,1}

Probx,y (f(x + a) − f(x) = z ∧ f(y + a) − f(y) = z)

=
∑

z∈{0,1}

Probx (f(x + a) − f(x) = z) · Proby (f(y + a) − f(y) = z)

=
∑

z∈{0,1}

(Probx (f(x + a) − f(x) = z))
2

.

If z = g(a), then Probx(f(x + a) − f(x) = z) = p(a). Thus∑
z �=g(a)

Probx (f(x + a) − f(x) = z) = 1 − p(a) ,

so ∑
z �=g(a)

(Probx (f(x + a) − f(x) = z))
2

= (1 − p(a))2 ,

12.2 The PCP Theorem 171

and
1 − δ ≤ p(a)2 + (1 − p(a))2 .

Since, as we noted above, p(a) ≥ 1/2, it follows that 1 − p(a) ≤ p(a) and

p(a)2 + (1 − p(a))2 ≤ p(a)2 + p(a)(1 − p(a)) = p(a) ,

and thus p(a) ≥ 1 − δ, as was claimed.
We apply this result three times, using again the fact that not only x but

also x + a is a random bit vector from Zm
2 . This gives

Probx (g(a) = f(a + x) − f(x)) = p(a) ≥ 1 − δ,

Probx (g(b) = f(b + a + x) − f(a + x)) = p(b) ≥ 1 − δ,

Probx (g(a + b) = f(a + b + x) − f(x)) = p(a + b) ≥ 1 − δ.

Thus the intersection of the three events has probability at least 1− 3δ. This
also holds for any event implied by this intersection. In particular, adding the
first two equations and subtracting the third, we get

Probx (g(a) + g(b) = g(a + b)) ≥ 1 − 3δ .

Since by assumption δ < 1/3,

Probx(g(a) + g(b) = g(a + b)) > 0 .

But the equation g(a) + g(b) = g(a + b) is true or false independent of the
choice of x. A positive probability that can only take on a value of 0 or 1 must
have the value 1. So g(a) + g(b) = g(a + b) for all a and b and thus g is linear.

Now we turn to the function evaluator. The function evaluator receives
as input the function table of a function f : Zm

2 → Z2 and an a ∈ Zm
2 . For

δ < 1/3 it must have following properties:

• If f is linear, then the result is f(a).
• If f is not linear, but δ-close to a linear function g, then the randomized

function evaluator should output g(a) with an error-probability bounded
by 2δ.

The function evaluator works as follows:

• Chose an x ∈ Zm
2 at random and compute f(x + a) − f(x).

The first property is clearly satisfied. The second property can be shown
as follows. Since f and g are δ-close,

Probx(f(x) = g(x)) ≥ 1 − δ

and
Probx(f(x + a) = g(x + a)) ≥ 1 − δ .

172 12 The PCP Theorem and the Complexity of Approximation Problems

Thus the probability that both events occur is at least 1 − 2δ. Both events
together, however, imply that f(x + a) − f(x) = g(x + a) − g(x), and by
the linearity of g, this implies that f(x + a) − f(x) = g(a). So the function
evaluator has the desired properties.

For the consistency test, the function tables for f1, f2, and f3 are available.
The represented functions are either linear or δ-close to a linear function. For
δ < 1/24 the consistency test should have the following properties:

• If the function tables represent linear functions of the type La
1 , La

2 , and La
3

for some a ∈ {0, 1}n, then the function tables pass the consistency test.
• If there is no a ∈ {0, 1}n such that the functions f1, f2, and f3 represented

in the tables are δ-close to La
1 , La

2 , and La
3 , then the consistency test detects

this with an error-probability bounded by some constant less than 1.

The consistency test works as follows:

• Choose x, x′, x′′ ∈ Zn
2 and y ∈ Zn2

2 independently at random.
• Define x ◦ x′ by (x ◦ x′)i,j = xix

′
j and x′′ ◦ y by (x′′ ◦ y)i,j,k = x′′

i yj,k.
• Use the function evaluator to compute estimates b for f1(x), b′ for f1(x

′),
b′′ for f1(x

′′), c for f2(x ◦ x′), c′ for f2(y), and d for f3(x
′′ ◦ y).

• The function tables pass the consistency test if bb′ = c and b′′c′ = d.

Linear functions La
1 , La

2 , and La
3 always pass the consistency test. For them

the function evaluator is error-free and

La
1(x) ·La

1(x′) =

(∑
1≤i≤n

aixi

)(∑
1≤j≤n

ajx
′
j

)
=

∑
1≤i,j≤n

aiajxix
′
j = La

2(x◦x′) .

Analogously it follows that La
1(x′′) ·La

2(y) = La
3(x′′ ◦ y). For the second prop-

erty we use the fact that for δ < 1/24 the error-probability of the function
evaluator is bounded by 2δ < 1/12. This means that the error-probability of
all six function evaluations together is bounded by 1/2. Now assume that the
function evaluations are without error. Let the linear function that is δ-close
to f1 have coefficients ai and the linear function that is δ-close to f2 have
the coefficients bi,j . Let ai,j := aiaj . Now consider the matrices A = (ai,j)
and B = (bi,j), and assume that the function evaluations are correct but the
function tables are inconsistent. Then A �= B. We represent the corresponding
inputs x and x′ as column vectors. The consistency test compares x�Ax′ and
x�Bx′ and is based on the fact that for A �= B and random x and x′ with
probability at least 1/4 the two values are different, and so the inconsistency
is detected. If A and B differ in the jth column, then the probability that
x�A and x�B differ in the jth position is 1/2. This follows by the already
frequently used argument regarding the value of the scalar products x�y and
x�z for y �= z and random x. If x�A and x�B differ, then with probability
1/2, (x�A)x′ and (x�B)x′ are also different.

If all the modules use the correct parameters, it follows that 3-Sat ∈
PCP(n3, 1) and thus that NP ⊆ PCP(n3, 1). ��

12.3 The PCP Theorem and Inapproximability Results 173

In order to drastically reduce the number of random bits, we need to get
by with much shorter proofs. One idea used is to replace the linear functions
in our approach with polynomials of low degree. Then a so-called composition
lemma is proved that produces from two verifiers with different properties an
improved verifier. As we have already indicated, we won’t go any deeper into
the proof of the PCP Theorem. Our discussion should at least have made
clear, however, that reading only constantly many bits of a proof can provide
an amazing amount of information. But this only holds for proof attempts
where false proofs are not always detected. The difficulty of reporting this
result is shown in the following quotation from The New York Times on April
7, 1992:

“ In a discovery that overturns centuries of mathematical tradition,
a group of graduate students and young researchers has discovered a
way to check even the longest and most complicated proof by scruti-
nizing it in just a few spots . . . ”

12.3 The PCP Theorem and Inapproximability Results

The article just cited continues

“. . . Using this new result, the researchers have already made a land-
mark discovery in computer science. They showed that it is impossible
to compute even approximate solutions for a large group of practical
problems that have long foiled researchers”

As examples, we want to show that this claim holds for Max-3-Sat and
Max-Clique.

The PCP Theorem makes it possible to make better use of the gap tech-
nique discussed in Section 8.3. Using the fact that 3-Sat ∈ PCP(log n, 1), we
will polynomially reduce 3-Sat to Max -3- Sat in such a way the following
properties are satisfied for a constant δ > 0:

• If the given clause set is satisfiable, then the clause set produced by the
reduction is also satisfiable.

• If the given clause set is not satisfiable, then at most a proportion of 1− δ
of the clauses produced by the reduction are satisfiable.

We now choose an ε > 0 so that 1 + ε = 1/(1 − δ). If Max-3-Sat has a
polynomial-time approximation algorithm with approximation ratio less than
1 + ε, then it follows that NP = P. For in that case we can solve 3-Sat in
the following way. First we use a reduction with the properties listed above,
and then we apply the approximation algorithm Max-3-Sat to the result and
compute the proportion α of satisfied clauses. If α > 1 − δ, then the given
clause set is satisfiable by the second property of the polynomial reduction. If
α ≤ 1 − δ, then by the first property of the reduction and the approximation

174 12 The PCP Theorem and the Complexity of Approximation Problems

ratio of the approximation algorithm, the clause set cannot be satisfiable. We
will formalize this proof strategy in the theorem below.

Theorem 12.3.1. There is a constant ε > 0 such that polynomial approxi-
mation algorithms for Max-3-Sat with an approximation ratio less than 1 + ε
only exist if NP = P.

Proof. We will complete the application of the gap technique described above.
By the PCP Theorem there are integer constants c and k such that there
is a probabilistically checkable proof for 3-Sat that uses at most c · log n
random bits and reads at most k bits of the proof for instances of 3-Sat

with n variables. We can assume that exactly �c · log n random bits are
available and that always exactly k bits of the proof are read. There are
then N := 2	c·log n
 ≤ nc assignments for the random bit vector. For each
assignment of the random bits and each 3-Sat input there are exactly k bits
of the proof that are read. So for each 3-Sat instance there can only be kN
different bit positions that have a non-zero probability of being read. All
other positions in the proof are irrelevant. So we can assume that the proof
has length exactly kN . The set of possible proofs is then the set {0, 1}kN .

Let C be a set of clauses of length 3 on n variables. For this set C we
consider N Boolean functions fr : {0, 1}kN → {0, 1} for 0 ≤ r ≤ N − 1. The
index r refers to the random bit vector, which will be interpreted as a binary
number. For a fixed r and C, the k proof positions jr(1) < · · · < jr(k) that
are read are also fixed. The value of fr(y) should take the value 1 if and only
if the probabilistic proof checker accepts the proof y for clause set C with
random bits r. Syntactically we describe all functions in dependence on all
the bits y = (y1, . . . , ykN) of the proof. But it is important that each function
fr essentially only depends on k of the y-variables. Now we can express the
properties of the probabilistic proof checker as properties of the functions fr.

• If the clause set is satisfiable, then there is a y ∈ {0, 1}kN such that all
fr(y) = 1 for all 0 ≤ r ≤ N − 1.

• If the clause set is not satisfiable, then for every y ∈ {0, 1}kN , fr(y) = 1
for at most half of the r with 0 ≤ r ≤ N − 1.

The polynomially many functions fr only essentially depend on a constant
number of variables. This makes it possible to compute the conjunctive normal
forms for all of the functions fr in polynomial time. For each function the
conjunctive normal form has at most 2k clauses of length k. Now we apply
the polynomial reduction Sat ≤p 3-Sat (Theorem 4.3.2) to replace the clauses
of each function with clauses of length 3. This replaces each of the given clauses
with k∗ = max{1, k − 2} clauses. To see that the properties of the functions
fr described above carry over to the new clause sets we note that fr has the
value 0 if any one of its at most 2k clauses has the value 0. After the described
transformation we obtain for fr at most k∗ · 2k clauses, and the value of fr is
0 if any one of these clauses is unsatisfied. Thus

12.3 The PCP Theorem and Inapproximability Results 175

• If the original set of clauses is satisfiable, then the at most k∗ ·2k ·N newly
formed clauses are simultaneously satisfiable.

• If the original set of clauses is not satisfiable, then for any assignment of
the variables of the newly formed clauses, there are at least N/2 clauses
(one each for half of the N fr-functions) that are not satisfied.

For δ := (N/2)/(k∗ ·2k ·N) = 1/(k∗ ·2k+1) at most a proportion of 1−δ of
the clauses in the newly formed clause set are simultaneously satisfiable unless
all the clauses are simultaneously satisfiable. By our preceding discussion we
have proven the theorem for ε := 1/(1 − δ) − 1 > 0. ��

The proof of Theorem 12.3.1 shows that we get better results if we can
decrease the size of k but that the constant c only effects the degree of the
polynomial that bounds the runtime. If k = 2, then we get a set of clauses
each of length 2. For such a set of clauses we can determine in polynomial
time if all the clauses are simultaneously satisfiable (see Section 7.1). Such
a probabilistic proof checker for 3-Sat or some other NP-complete problem
would imply that NP = P. Theorem 12.3.1 and the existence of a polynomial
approximation algorithm with finite approximation ratio for Max-3-Sat imply
the following corollary.

Corollary 12.3.2. If NP �= P, then Max -3- Sat ∈ APX−PTAS. ��

Now we turn our attention to Max-Clique. This problem stood at the cen-
ter of the attempts to find “better PCP Theorems” (Arora and Safra (1998),
H̊astad (1999)). Here we are unable to prove the best known result but will
be satisfied with the following theorem.

Theorem 12.3.3. If NP �= P, then Max-Clique /∈ APX.

Proof. Once again we use the gap technique. As in the proof of Theo-
rem 12.3.1, we use a probabilistic proof checker for 3-Sat that uses �c · log n
random bits and reads exactly k bits of the proof for a clause set on n vari-
ables. Once again let N := 2	c·log n
 ≤ nc. For this probabilistic proof checker
we construct the following graph in polynomial time. For each assignment of
the random vector r we consider all 2k assignments of the k bits of the proof
that are read. Each assignment for which the proof is accepted is represented
by a vertex in the graph, so the number of vertices is bounded above by 2k ·N .
The vertices that belong to the same r form a group. Vertices from the same
group are never connected by edges. Vertices from different groups are con-
nected by an edge if and only if there are no contradictions in the assignment
for the proof bits that both read.

If the given set of clauses is satisfiable, then there is a proof that is accepted
for all assignments r. From each group we consider the vertices that represent
this proof. By definition these vertices form a clique of size N .

If the given set of clauses is not satisfiable, then every proof is only ac-
cepted for half of the assignments r. If there is a clique of size N ′ > N/2,

176 12 The PCP Theorem and the Complexity of Approximation Problems

then by construction, the N ′ vertices must come from N ′ different groups.
Furthermore, pairwise their read bits do not contradict each other. So there is
a proof that is compatible with all of these partial assignments of proof bits.
This proof will be accepted by N ′ (more than half) of the N assignments
of r, in contradiction to the assumption that the given set of clauses is not
satisfiable.

So if NP �= P, then there is no polynomial approximation algorithm for
Max-Clique that achieves an approximation ratio of 2.

In contrast to the proof of Theorem 12.3.1, the constant k does not show
up in the size of the resulting gap. The gap is 2 because the probabilistic proof
checker has an error-probability bounded by 1/2. But for each constant d > 1,
there is a PCP(log n, 1)-verifier for 3-Sat with an error-probability bounded
by 1/d. If we carry out the same proof but use this probabilistic proof checker
instead, we obtain a gap of size d. This proves the theorem. ��

Our proof of Theorem 12.3.3 applied the PCP Theorem directly. In The-
orem 8.4.4 we described a PTAS-reduction from Max -3- Sat to Max-Clique

with α(ε) = ε. Using this we obtain for Max-Clique the same inapproxima-
bility result that we showed for Max-3-Sat in Theorem 12.3.1. In contrast to
Max-3-Sat, Max-Clique has the property of self-improvability, which means
that from a polynomial approximation algorithm with approximation ratio c
we can construct an approximation algorithm with approximation ratio c1/2.
Since this increases the degree of the polynomial bounding the runtime, we
can only repeat this constantly many times. The approximation ratio can then

be reduced from c to c1/2k

for any constant k, and thus under 1 + ε for any
ε > 0. This gives us a proof of Theorem 12.3.3 from Theorem 12.3.1 without
applying the PCP Theorem directly.

For the proof of the property of self-improvability we consider for undi-
rected graphs G = (V, E) the product graph G2 on V ×V . The product graph
contains the edge {(vi, vj), (vk, vl)}, if

• (i, j) �= (k, l), and
• {vi, vk} ∈ E or i = k, and
• {vj , vl} ∈ E or j = l.

From a clique with vertices {v1, . . . , vr} in G we obtain a clique with vertices
{(vi, vj) | 1 ≤ i, j ≤ r} in G2. Thus if cl(G) denotes the maximal clique size in
G, then cl(G2) ≥ cl(G)2. On the other hand, suppose there is a clique of size
m in G2. Consider the vertex pairs (vi, vj) that form this clique. In the first
or second component of these pairs there must be at least �m1/2� vertices.
To show that cl(G2) ≤ cl(G)2 we will show that these �m1/2� vertices form a
clique in G. If vi and vj both occur as first components in the vertex pairs of
the clique in G2, then there are vk and vl such that (vi, vk) and (vj , vl) also
belong to the clique in G2, and so are connected by an edge. But this implies
by the definition of G2 that {vi, vj} ∈ E. The arguments proceed analogously
if vi and vj are second components of such vertex pairs. Thus cl(G2) = cl(G)2.

12.4 The PCP Theorem and APX-Completeness 177

To improve a polynomial c-approximation algorithm A for Max-Clique

we compute for G the graph G2 and apply A to G2 to get a clique of size m,
from which we compute a clique of size �m1/2� in G which we output. Then
cl(G2)/m ≤ c and

cl(G)/�m1/2� ≤ (cl(G)2/m)1/2 = (cl(G2)/m)1/2 ≤ c1/2.

This gives us a c1/2 approximation algorithm with polynomially bounded
runtime.

We won’t derive any more inapproximability results. Kann and Crescenzi
(2000) survey the best currently known results. For the optimization problems
that we have dealt with most intensively we list the best known bounds in
Table 12.3.1.

12.4 The PCP Theorem and APX-Completeness

In Section 8.5 we already showed that Max-W-Sat and Min-W-Sat are NPO-
complete. Here we want to use the PCP Theorem to show that Max-3-Sat

is APX-complete. This result is the starting point for many further APX-
completeness results, but we will not discuss these here. We have already
seen that NP = P follows from Max -3- Sat ∈ PTAS. In the first and decid-
ing step of the proof, we show that Max-3-Sat is Max-APX-complete, where
Max-APX contains the maximization problems from APX. After that we show
that every problem in Min-APX can be reduced to a maximization variant of
itself with a ≤PTAS-reduction. Combining these gives the announced result.

We first want to discuss the idea of the proof of Max-APX-completeness.
Consider a problem A ∈ Max-APX that can be approximated in polynomial
time with an approximation ratio of r∗ ≥ 1. The constant r∗ could be very
large. On the other hand, for small approximation ratios, Max-3-Sat is a dif-
ficult problem. The approximate solution for A provides us with an interval
[a, r∗ · a] for the value of an optimal solution. We divide this interval into
subintervals Ii := [r̃i−1 · a, r̃i · a], i ≥ 1, for some r̃ > 1. As long as r̃ is
also a constant, we obtain constantly many subintervals. For each subinterval
the quotient formed by the upper and lower ends is so small that the sub-
problem Ai consisting of all instances that have an optimal solution value in
Ii is ≤PTAS-reducible to Max-3-Sat. Of course, now we have the problem of
building from solutions for the constructed instances of Max-3-Sat, solutions
of sufficiently good approximation ratio for the entire instance of A. These
ideas will be carried out in the following Lemma.

Lemma 12.4.1. Max-3-Sat is Max-APX-complete.

Proof. At the end of Section 12.3 we said that Max-3-Sat is 1.249-
approximable. But we can show that Max -3- Sat ∈ APX directly by a simple
argument. Each clause is satisfied by one of the following assignments: the

178 12 The PCP Theorem and the Complexity of Approximation Problems

Max-Sat 1.2987-approximable and APX-complete

Max-k-Sat 1/(1 − 2−k)-approximable for k ≥ 3, if all
the clauses have k different literals, but not
(1/(1 − 2−k) − ε)-approximable

Max-3-Sat 1.249-approximable, even if literals are allowed
to appear more than once in a clause

Max-2-Sat 1.0741-approximable, but not 1.0476-
approximable; literals may appear in a clause
more than once

Min-VertexCover 2-approximable, but not 1.3606-approximable

Min-GC O(n(log log n)2/log3 n)-approximable, but
not n1/7−ε-approximable; not even n1−ε-
approximable, if NP �= ZPP

Max-Clique O(n/ log2 n)-approximable, but not n1/2−ε-
approximable; not even n1−ε-approximable, if
NP �= ZPP

Min-TSP NPO-complete

Min-TSPsym,∆ 3/2-approximable and APX-complete

Max-3-DM (3/2 + ε)-approximable and APX-complete

Min-BinPacking 3/2-approximable, but not even (3/2 − ε)-
approximable

(71/60 + 78/(71opt))-approximable and also
(1 + (log2 opt)/opt)-approximable where opt de-
notes the value of an optimal solution

Min-SetCover (1 + ln n)-approximable, where n is the cardinal-
ity of the underlying set, but for some c > 0
not (c · ln n)-approximable, and not ((1−ε) ln n)-
approximable, if polynomial-time nondeterminis-
tic algorithms can’t be replaced by deterministic
algorithms that run in time O(nlog log n)

Table 12.3.1. Best known approximability and inapproximability results. The ap-
proximation ratios are with respect to polynomial-time algorithms, ε is always an
arbitrary positive constant, and the negative results assume that NP �= P unless we
mention otherwise.

12.4 The PCP Theorem and APX-Completeness 179

assignment consisting entirely of 0’s and the assignment consisting entirely
of 1’s. Whichever of these two assignments satisfies the most clauses has an
approximation ratio bounded by 2.

Now let A ∈ Max-APX and let r∗ be a constant approximation ratio achiev-
able by an algorithm G. We want to show that A ≤PTAS B = Max -3- Sat.
In the definition of ≤PTAS-reducibility (Definition 8.4.1), the demands on the
approximation ratio of the approximate solution for A that comes from the
approximate solution for B are given by

rB(f(x), y) ≤ 1 + α(ε) ⇒ rA(x, g(x, y, ε)) ≤ 1 + ε .

For α : Q+ → Q+ we will use a linear function α(ε) = ε/β with β > 0.
Then 1 + α(ε) can take on every rational value r > 1, ε = α(ε) · β, and for
r = 1 + α(ε), 1 + ε = 1 + α(ε) · β = 1 + (r − 1) · β. The demand on the
approximation ratio of g(x, y, ε) given above is equivalent to

rB(f(x), y) ≤ r ⇒ rA(x, g(x, y, r)) ≤ 1 + β · (r − 1) .

The following choice of the parameter β turns out to be suitable:

β := 2(r∗ log r∗ + r∗ − 1) · (1 + ε)/ε ,

where ε > 0 is now a constant for which Theorem 12.3.1 is satisfied. Further-
more, ε is chosen so that β is rational. The smaller the “difficult gap” for
Max-3-Sat, and the worse the given approximation ratio for A is, the larger
β will be and the weaker the demands will be for the approximate solution
for A that must be computed.

The case r∗ ≤ 1 + β · (r − 1) can be handled easily. The approximation
algorithm G already provides a sufficiently good approximate solution. For
all instances x of the problem A, let f(x) be the same arbitrary instance of
B. That is, we will define g(x, y, r) independently of y. Let g(x, y, r) be the
solution s(x) that algorithm G computes for instance x. Its approximation
ratio is bounded by r∗ ≤ 1+β ·(r−1) and so the demand on the approximation
ratio g(x, y, r) is met.

We can now assume that b := 1 + β · (r − 1) < r∗. Unfortunately there
is no way to avoid a few arithmetic estimations in this proof. First, let k be
defined by k := �logb r∗�. From b < r∗ and the inequality log z ≥ 1 − z−1 for
z ≥ 1 it follows that

k ≤
log r∗

log b
+ 1 ≤

log r∗

1 − 1/b
+ 1

=
b · log r∗

b − 1
+

b − 1

b − 1
<

r∗ log r∗ + r∗ − 1

b − 1
=

1

b − 1
·

β · ε

2 · (1 + ε)

and

180 12 The PCP Theorem and the Complexity of Approximation Problems

b − 1

β
<

ε

2k(1 + ε)
.

From b = 1 + β · (r − 1) it follows that

r =
b − 1

β
+ 1 <

ε

2k(1 + ε)
+ 1 .

We again let s(x) denote the solution computed by algorithm G for in-
stance x, we let vA(x, s) denote the value of this solution, and we let vopt(x)
denote the value of an optimal solution for x. Then

vA(x, s) ≤ vopt(x) ≤ r∗ · vA(x, s) ≤ bk · vA(x, s) ,

where the last inequality follows from the definition of k. Now we partition
the interval of solution values into k intervals of geometrically growing sizes,
that is, into the intervals Ii = [bi · vA(x, s), bi+1 · vA(x, s)] for 0 ≤ i ≤ k − 1.

First we deal with the intervals individually. For 0 ≤ i ≤ k−1 we consider
the following nondeterministic polynomial-time algorithm Gi for instances of
A:

• Nondeterministically generate a solution s′ ∈ S(x) (the definitions in Sec-
tion 8.1 imply that this is possible in polynomial time).

• Accept the input if vA(x, s′) ≥ bi · vA(x, s). In this case, leave s′ and
vA(x, s′) on the work tape.

Now we can apply the methods of the proof of Cook’s Theorem to express
the language accepted by this algorithm as a 3-Sat formula γi. It is important
to note that we can compute s′ and its value vA(x, s′) in polynomial time
from a satisfying assignment for γi. This is because the satisfying assignment
also codes the accepting configuration. We can design the algorithms Ai so
that they all have the same runtime. This means that all of the formulas γi

(0 ≤ i ≤ k − 1) will have the same number of clauses. Finally we define ϕi

as the result of the transformation of γi as described in Theorem 12.3.1 and
f(x) as the conjunction ϕ of all ϕi for 0 ≤ i ≤ k − 1. Using the construction
from Theorem 12.3.1 we have also obtained that all the formulas ϕi have the
same number m of clauses.

So we have a Max-3-Sat instance with km clauses and therefore vopt(ϕ) ≤
km. Now let a be an assignment of the variables in this formula. We assume
that the approximation ratio of a is bounded by r. Then vopt(ϕ) ≤ r ·vB(ϕ, a)
and

vopt(ϕ) − vB(ϕ, a) ≤ (1 − 1/r) · vopt(ϕ) ≤ (1 − 1/r) · km .

Now let ri be the approximation ratio for the assignment a if we use a as a
solution for the Max-3-Sat instance ϕi. Since the formulas ϕj for 0 ≤ j ≤ k−1
come from different algorithms, they are defined on disjoint sets of variables.
Optimal assignments for the subproblems can be selected independently and

12.4 The PCP Theorem and APX-Completeness 181

form an optimal solution to the combined problem. So for all i ∈ {0, . . . , k−1},

vopt(ϕ) − vB(ϕ, a) =
∑

0≤j≤k−1

(vopt(ϕj) − vB(ϕj , a))

≥ vopt(ϕi) − vB(ϕi, a)

= vopt(ϕi) · (1 − 1/ri) ,

where the last equality follows from the definition of ri. In the proof that
Max -3- Sat ∈ APX we saw that it is always possible to satisfy half of the
clauses, so vopt(ϕi) ≥ m/2 and

vopt(ϕ) − vB(ϕ, a) ≥ m · (1 − 1/ri)/2 .

We combine the two bounds for vopt(ϕ) − vB(ϕ, a) and obtain

m · (1 − 1/ri)/2 ≤ (1 − 1/r) · km .

With a simple transformation we get

1 − 2k(1 − 1/r) ≤ 1/ri .

Now we go back and use our previously proven inequality

r <
ε

2k(1 + ε)
+ 1 =

ε + 2k(1 + ε)

2k(1 + ε)

and obtain

1 − 2k(1 − 1/r) > 1 − 2k ·
ε

ε + 2k(1 + ε)

= 1 −
ε

1 + ε + ε/(2k)

=
1 + ε/(2k)

1 + ε + ε/(2k)
.

Together it follows that

ri <
1 + ε + ε/(2k)

1 + ε/(2k)
= 1 +

ε

1 + ε/(2k)
< 1 + ε .

This approximation ratio even guarantees that we get a satisfying assign-
ment for ϕi when one exists. In our consideration of NP ⊆ PCP(n3, 1), we saw
that from the always accepted proof that a 3-Sat formula is satisfiable we can
compute in polynomial time (with respect to the length of the proof) a satis-
fying assignment. This is also true for the proofs of the actual PCP Theorem,
which only have polynomial length.

182 12 The PCP Theorem and the Complexity of Approximation Problems

By construction there is a j such that ϕ0, . . . , ϕj are satisfiable but
ϕj+1, . . . , ϕk−1 are not satisfiable. Then vopt(x) ∈ Ij , so

bj · vA(x, s) ≤ vopt(x) ≤ bj+1 · vA(x, s) .

From the satisfying assignment of ϕj we can compute in polynomial time a
solution s∗ for the instance x of A that has a value that lies in the interval
Ij . We define the result of this computation as g(x, a, r). Since vopt(x) and
vA(x, s∗) lie in Ij ,

vopt(x)/vA(x, s∗) ≤ b = 1 + β · (r − 1) ,

and so rA(x, g(x, a, r)) ≤ 1 + β · (r − 1). This proves the lemma. ��

Now we only have to derive the announced relationship between minimiza-
tion problems and maximization problems.

Lemma 12.4.2. For every minimization problem A ∈ APX there is a maxi-
mization problem B ∈ APX such that A ≤PTAS B.

Proof. The basic idea is to set up a maximization problem based on the min-
imization problem by altering the evaluation function so that the direction
of the goal is reversed. The obvious idea of replacing v(x, s) with −v(x, s) is
not allowed because the values must be positive (see Section 8.1). The next
obvious idea is to replace v(x, s) with b − v(x, s) for a large enough b. This
is problematic since for instances x for which vopt(x) is much smaller than
b, solutions for the given problem A that have a poor approximation ratio
suddenly have a good approximation ratio after the transformation. Thus the
value of b would have to depend on x.

Since A ∈ APX, there is a polynomial-time approximation algorithm G for
A with a worst-case approximation ratio bounded above by a constant r∗ ≥ 1.
We can choose r∗ to be an integer. Let s∗(x) denote the solution computed by
algorithm G for instance x. Our maximization problem B will have the same
set of instances as A, and for each instance the same allowable solutions. The
value of a solution for x is defined by

vA(x, y) ≤ vA(x, s∗(x)) ⇒ vB(x, y) := (r∗ + 1) · vA(x, s∗(x)) − r∗ · vA(x, y),

vA(x, y) > vA(x, s∗(x)) ⇒ vB(x, y) := vA(x, s∗(x)) .

This evaluation function vB can be computed in polynomial time. We can
use the approximation algorithm G as an approximation algorithm for the
maximization problem B. By the definition of vB , vB(x, s∗(x)) = vA(x, s∗(x))
and

vA(x, s∗(x)) ≤ vopt,B(x) ≤ (r∗ + 1) · vA(x, s∗(x)) .

From this it follows that vopt,B(x)/vB(x, s∗(x)) ≤ r∗ + 1 and for the maxi-
mization problem B, G yields an approximation ratio bounded by r∗ +1, and
so B ∈ APX.

12.4 The PCP Theorem and APX-Completeness 183

Now we need to design a ≤PTAS-reduction from A to B. For this we de-
fine f(x) = x, so we consider the same instance for A and for B. The back
transformation depends only on the instance x and the solution y but not on
the approximation ratio r. As in the proof of Lemma 12.4.1, we measure the
approximation ratio with r and not with ε. Then we define g by

vA(x, y) ≤ vA(x, s∗(x)) ⇒ g(x, y, r) := y ,

vA(x, y) > vA(x, s∗(x)) ⇒ g(x, y, r) := s∗(x) .

So g is polynomial-time computable. Finally, we let β := r∗ + 1.
Now we need to check the following condition:

rB(f(x), y) ≤ r ⇒ rA(x, g(x, y, r)) ≤ 1 + β · (r − 1) .

As in the definition of the evaluation function and the definition of g, we
distinguish between two cases. The simpler case is the case that vA(x, y) >
vA(x, s∗(x)). Then s∗(x) is chosen as the result and s∗(x) is better than y.
Thus

rA(x, g(x, y, r)) = rA(x, s∗(x)) ≤ r ≤ r + (β − 1)(r − 1) = 1 + β · (r − 1) ,

where the last inequality follows because β ≥ 1 and r ≥ 1.
Now suppose vA(x, y) ≤ vA(x, s∗(x)) so that g(x, y, r) = y. We have de-

fined vB just so that the condition we must show will be fulfilled. We have

rA(x, g(x, y, r)) = rA(x, y) = vA(x, y)/vopt,A(x)

and so it suffices to bound vA(x, y) from above by (1 + β · (r − 1)) · vopt,A(x).
By the definition of vB(x, y),

vA(x, y) = ((r∗ + 1) · vA(x, s∗(x)) − vB(x, y))/r∗ .

By our assumption rB(f(x), y) = rB(x, y) = vopt,B(x)/vB(x, y) ≤ r, and thus

vB(x, y) ≥ vopt,B(x)/r .

A simple computation shows that 1/r ≥ 2 − r if r ≥ 1. Together we get

vA(x, y) ≤ ((r∗ + 1) · vA(x, s∗(x)) − (2 − r)vopt,B(x))/r∗

= ((r∗ + 1) · vA(x, s∗(x)) − vopt,B(x))/r∗ + (r − 1) · vopt,B(x)/r∗ .

First we give an estimate for the second summand. By the definition of vB ,

vopt,B(x) ≤ (r∗ + 1) · vA(x, s∗(x)) .

Since β = r∗ + 1 and s∗(x) is r∗-optimal for A, it follows that

(r − 1) · vopt,B(x)/r∗ ≤ (r − 1) · β · vA(x, s∗(x))/r∗ ≤ β · (r − 1) · vopt,A(x) .

184 12 The PCP Theorem and the Complexity of Approximation Problems

So the claim reduces to

((r∗ + 1) · vA(x, s∗(x)) − vopt,B(x))/r∗ ≤ vopt,A(x) .

This inequality is even correct as an equality. Here we make use of the special
choice of vB which for a given instance x causes the same solution y∗ to be
optimal for both A and B. So vA(x, y∗) = vopt,A(x), vB(x, y∗) = vopt,B(x),
and

vB(x, y∗) = (r∗ + 1) · vA(x, s∗(x)) − r∗ · vA(x, y∗) .

From this it follows that

((r∗ + 1) · vA(x, s∗(x)) − vopt,B(x))/r∗ = vopt,A(x) .

Together we have

vA(x, y) ≤ (1 + β · (r − 1)) · vopt,A(x)

and the lemma is proved. ��

From Lemmas 12.4.1 and 12.4.2 we obtain our main result.

Theorem 12.4.3. Max-3-Sat is APX-complete. ��

This result is the starting point for using approximation-preserving reduc-
tions to obtain more APX-completeness results.

The PCP Theorem contains a new characterization of the complexity
class NP. The one-sided error and error-probability of 1/2 allowed in
this characterization give rise to a large “gap” between the instances
that are accepted and those that are rejected. This gap facilitates new
applications of the gap technique for proving inapproximability results
and completeness results for classes of approximation problems.

13

Further Topics From Classical Complexity

Theory

13.1 Overview

As was emphasized already in the introduction, the main focus of this text is
on particular complexity theoretical results for important problems. So newer
aspects like the complexity of approximation problems or interactive proofs
have been placed in the foreground while structural aspects have been reduced
to the bare essentials required for the desired results. But there are additional
classical topics of complexity theory with results of fundamental importance.
A few of these will be presented in this chapter.

The complexity classes we have investigated to this point have been based
on the resource of computation time. An obvious thing to try is to develop
an analogous theory for the resource of storage space. The resulting classes
are defined in Section 13.2. It can be shown that all decision problems that
are contained in the polynomial hierarchy can be decided using only polyno-
mially bounded space and so are contained in the class PSPACE. This means
that problems that are complete for PSPACE with respect to polynomial re-
ductions do not belong to Σk unless Σk = PSPACE. So these problems are also
difficult with respect to the resource of time. PSPACE-complete problems will
be introduced in Section 13.3.

The next natural question is whether there is a hierarchy of classes analo-
gous to polynomial hierarchy – more precisely the time hierarchy – for space-
based complexity classes. But the analogous hierarchy of classes does not exist
because nondeterminism can be simulated deterministically in quadratic space
(Section 13.4) and nondeterminism can simulate “co-nondeterminism” with
the same space requirements (Section 13.5). Another place that one could
use space bounds in place of time bounds would be to replace polynomial re-
ductions – more precisely polynomial time reductions – with space-bounded
reductions. Reductions that only require logarithmic space are a restriction on
polynomial-time reductions and permit a view of the structure within P. The
study of this structure leads to the discovery of problems in P that presum-
ably cannot be solved by computers with many processors in polylogarithmic

186 13 Further Topics From Classical Complexity Theory

time. These issues will be discussed in Section 13.6. Finally, in Section 13.7 we
introduce another variant of many problems. In Section 2.1 we distinguished
between optimization problems, evaluation problems, and decision problems.
In decision problems we ask whether or not there exists a solution with a
certain property. A generalization of this is the counting problem, in which
the number of such solutions must be computed.

13.2 Space-Bounded Complexity Classes

As we did for time-based complexity classes, we will use the Turing machine
model to define space-bounded complexity classes. The space used by a nonde-
terministic computation on input x can be measured by counting the number
of different tape cells that are visited during the computation. For nonde-
terministic computations we must consider all computation paths. Since for
most problems it is necessary to read the entire input, sublinear space would
not make much sense. But this is too coarse a measure of space. Instead, we
consider Turing machines with two tapes. The input is located on an input
tape on which the beginning and end are marked. The input tape is read-only,
that is its contents can be read, but no new symbols can be written on the
input tape. The second tape is the work tape and behaves like the tapes we are
accustomed to, except that we will require this tape to be one-way infinite,
that is we only allow addresses i ≥ 1. The space used by a computation is
measured solely in terms of the work tape, and is equal to the largest j such
that work tape cell j is visited during the computation.

Definition 13.2.1. The complexity class DTAPE(s(n)) contains all decision
problems that can be decided by a deterministic Turing machine using at most
�s(|x|)� space for each input x. NTAPE (s(n)) is defined analogously for non-
deterministic Turing machines. PSPACE is the union of all DTAPE(nk) for
k ∈ N.

The notation is not entirely consistent since TAPE and SPACE refer to
the same resource. But here as elsewhere we will go with the notation used
most often. It is notable that the space bound s(n) is taken very exactly.
DTAPE(n) only allows n tape cells to be used on the work tape, whereas linear
time allowed O(n) computation steps. This can be explained by the following
remark, in which we will show that for space bounds constant factors can be
saved without any difficulty.

Remark 13.2.2. For every natural number k, DTAPE (s(n)) = DTAPE (s(n)/k)
and NTAPE (s(n)) = NTAPE (s(n)/k).

Proof. If we replace the tape alphabet Γ with Γ ′ := Γ k ×{1, . . . , k}, then we
can store k symbols from Γ on one tape cell and also mark which of them is
“really” being read. The simulation using this idea is now obvious. ��

13.2 Space-Bounded Complexity Classes 187

At this point we want to make a few comments about the class CSL for
those who are familiar with the classes in the Chomsky hierarchy. Context
sensitive languages are defined by context-sensitive grammars (for more infor-
mation see, for example, Hopcroft, Motwani, and Ullman (2001)). Except for
the generation of the empty string, context-sensitive languages are monotone,
that is, the right side of each rule is not shorter than the left side. This allows
the following nondeterministic algorithm that checks if x ∈ L for a context-
sensitive language L. On the work tape a region of length |x| is marked. This is
where a derivation starting with the start symbol will be nondeterministically
generated. Derivations that do not stay within the space bounds indicated by
the marked cells are terminated and x is rejected. Otherwise, the sequence
generated is compared with the input x after every step. If they are found to
be equal, x is accepted. This shows that CSL ⊆ NTAPE(n). We will omit the
proof of the other direction but state the result in the following theorem.

Theorem 13.2.3. CSL = NTAPE(n). ��

This theorem shows that complexity classes based on space bounds can be
used to characterize important classes of problems.

Connections between time and space bounds are interesting. The basic
idea of the following consideration is simple. If a computation with restricted
space uses too much time, then it must repeat a configuration (see Section 5.4).
A configuration is an instantaneous snapshot of a Turing machine. The set
of all possible configurations for an input of length n can be described by
Q×{1, . . . , n}×{1, . . . , s(n)}×Γ s(n), that is, by giving the current state q ∈ Q,
the position i ∈ {1, . . . , n} on the input tape, the position j ∈ {1, . . . , s(n)}
on the work tape, and the contents y ∈ Γ s(n) of the work tape. If there is
an accepting computation path, then there is an accepting computation path
that does not repeat any configurations and therefore has length at most
|Q| ·n ·s(n) · |Γ |s(n) = 2O(log n+s(n)). Since we can count computation steps, we
can terminate computation paths that have not halted after |Q|·n·s(n)·|Γ |s(n)

steps and reject the input along these paths. The only requirement is that s(n)
can be computed from n in time 2O(log n+s(n)). This is true of all “reasonable”
space bounds. So we make the following remark:

Remark 13.2.4. If s(n) can be computed in space s(n) and in time bounded by
2O(log n+s(n)), then deterministic Turing machines using at most s(n) space can
be simulated by Turing machines that use space s(n) and time 2O(log n+s(n)).
The same is true for nondeterministic Turing machines.

Between space and time there is at most an exponential blow-up if s(n) ≥
log n. Space bounds s(n) = o(log n) are a special case, since the position
on the input tape can serve as auxiliary storage. This explains why some of
the results that follow begin with the assumption that s(n) ≥ log n. From
Remark 13.2.4 it follows immediately that DTAPE(log n) ⊆ P.

188 13 Further Topics From Classical Complexity Theory

Theorem 13.2.5. If s(n) can be computed in time 2O(log n+s(n)), then nonde-
terministic Turing machines with space bound s(n) can be simulated by deter-
ministic Turing machines using time and space both bounded by 2O(log n+s(n)).

Proof. Let L ∈ NTAPE(s(n)) and let M be the corresponding nondeterministic
Turing machine. The configuration graph of M has a vertex for each of the
2O(log n+s(n)) configurations. An edge goes from one configuration to another if
the second is a possible successor configuration of the first for M . Using depth-
first search we can check in linear time (with respect to the size 2O(log n+s(n)))
whether an accepting configuration is reachable from the initial configuration.

��

In particular, NTAPE(log n) ⊆ P.
We conclude this section with a comparison of the polynomial hierarchy

and PSPACE.

Theorem 13.2.6. For all k ∈ N, Σk ⊆ PSPACE, thus PH ⊆ PSPACE.

Proof. We prove by induction on k that Σk and Πk are subsets of PSPACE.
Σ0 = Π0 = P ⊆ PSPACE, since it is not possible in polynomial time to use
more than polynomial space. If L ∈ Σk = NP(Πk−1), then by the logical
characterization of Σk there is a decision problem L′ ∈ Πk−1 and a polynomial
p such that

L =
{

x | ∃y ∈ {0, 1}p(|x|) : (x, y) ∈ L′
}

.

Now we try all values of y in lexicographical order. The storage of the current
y requires only polynomial space p(|x|), and by the inductive hypothesis,
checking whether (x, y) ∈ L′ can be done in space that is polynomial in |x|+
p(|x|). So the space required for the entire algorithm is polynomially bounded
in |x|. This proves that Σk ⊆ PSPACE; Πk ⊆ PSPACE follows analogously. ��

In summary, for all k ≥ 1,

DTAPE(log n) ⊆ NTAPE(log n) ⊆ P ⊆ NP ⊆ Σk ⊆ PSPACE ⊆ NPSPACE .

13.3 PSPACE-complete Problems

By Definition 5.1.1, a decision problem L is PSPACE-complete if it belongs to
PSPACE and every decision problem L′ ∈ PSPACE can by polynomially reduced
to L, that is, L′ ≤p L. Just as NP-complete problems can be solvable in
nondeterministic linear time, so PSPACE-complete problems don’t necessarily
require a lot of space. But since Σk ⊆ PSPACE (Theorem 13.2.6) and Σk

is closed under polynomial reductions, a PSPACE-complete problem can only
be in Σk if Σk = PSPACE. So for PSPACE-complete problems it is “even less
likely” than for NP-complete problems that they can be solved in polynomial
time. Just as the generalization Satk

cir of Sat was the first problem that we
showed to be Σk-complete, so it will be another obvious generalization of these
problems that will be our first PSPACE-complete problem.

13.3 PSPACE-complete Problems 189

Definition 13.3.1. A quantified Boolean formula consists of a Boolean ex-
pression E(x) over 0, 1, x1, . . . , xk and the Boolean operators ∧ (AND), +
(OR), and ¬ (NOT), such that all the variables are quantified:

(Q1x1) . . . (Qkxk) : E(x) with Qi ∈ {∃,∀} .

The decision problem QBF is the decision problem of determining whether a
quantified Boolean expression is true.

In an instance of QBF the number of quantifier alternations is bounded only
by the number of variables (minus 1). So QBF is a natural generalization of
Satk

cir.

Theorem 13.3.2. QBF is PSPACE-complete.

Proof. First we note that QBF ∈ DTAPE(n) ⊆ PSPACE, where n is the length
of the input. Let k be the number of quantifiers (which equals the number
of variables). It is easy to check whether a Boolean expression over constants
is true in linear space. This is the claim when k = 0. In the general case we
must consider both possible values of x1 and for each evaluate a quantified
Boolean expression with k − 1 quantifiers. To store the result of one of these
evaluations while we compute the other requires only a constant amount of
extra space, so by Remark 13.2.2, QBF ∈ DTAPE(n) ⊆ PSPACE.

Now we must show how to polynomially reduce an arbitrary problem
L ∈ PSPACE to QBF. By the results in Section 13.2 we can assume that
L is decided by a Turing machine M in space p(n) and time 2p(n) for some
polynomial p. As in the proof of Cook’s Theorem (Theorem 5.4.3) we will rep-
resent the computation of M with a Boolean formula. We already know that
we can express configurations using variables in space p(n) and how to test
a Boolean formula to see if the variables represent a possible configuration.
We will use the abbreviated notation ∃K and ∀K for quantification over all
the variables that represent configurations, and always assume that the test
whether the variables describe a configuration is conjunctively added to the
formulas described below. The formula S(K, x) tests whether K is the initial
configuration for input x, and A(K) tests whether K is an accepting configu-
ration. Finally, Tj(K, K ′) tests for two configurations K and K ′ whether K ′

can be reached in 2j steps from K.
Our first attempt to transform the input x for the decision problem L into

a quantified Boolean formula Q(x) is

Q(x) := ∃K0∃Ka : (Tp(n)(K0, Ka) ∧ S(K0, x) ∧ A(Ka)) .

It is clear that x ∈ L if and only if Q(x) is true, but Tp(n)(K0, Ka) is not yet
in the proper syntactical form. Now we describe how to bring Tj(K1, K2) into
the proper form. For j = 0 we can reuse the construction from the proof of
Cook’s Theorem. By induction, the representation

190 13 Further Topics From Classical Complexity Theory

Tj(K1, K2) = ∃K : (Tj−1(K1, K) ∧ Tj−1(K, K2))

is correct. Proceeding this way leads in the end to a syntactically correct but
exponentially long representation, so this cannot be done in polynomial time.

The key idea of this proof is to have Tj get by with one call to Tj−1 instead
of two, as is needed in the formula above. We claim that Tj(K1, K2) can be
represented as

∃K3∀K4∀K5 : B(K1, . . . , K5) + Tj−1(K4, K5) (13.1)

with

B(K1, . . . , K5) := ¬
[
((K4, K5) = (K1, K3)) + ((K4, K5) = (K3, K2))

]
.

In case Tj(K1, K2) is true, let K3 be the configuration reached from config-
uration K1 after 2j−1 steps. Then B(K1, . . . , K5) is clearly true for all pairs
except for (K1, K3) and (K3, K2). But the entire expression is also true for
these pairs since Tj−1(K1, K3) and Tj−1(K3, K2) are true. On the other hand,
if K3 witnesses that Formula (13.1) is true, then it follows that Tj−1(K1, K3)
and Tj−1(K3, K2) and thus Tj(K1, K2) are true. This formula can be applied
to express Tp(n)(K0, Ka) in terms of a T0-expression. For this we quantify over
3·p(n) configurations and there are p(n) expressions of the form B(K1, . . . , K5)
and then finally a T0-expression. Since configurations can be described with
polynomially many variables and can be checked for syntactic correctness with
formulas of polynomial length, and since a test for the equality of two config-
urations only requires formulas of polynomial length, the entire formula Q(x)
has polynomial length. Its simple structure makes it possible to construct
Q(x) in polynomial time. This polynomial reduction of L to QBF proves the
theorem. ��

There is a long list of PSPACE-complete problems (see, for example, Garey
and Johnson (1979)). Interestingly many well-known games are PSPACE-
complete, if they are generalized to arbitrary sizes. For the well-known board
games go and checkers, there are obvious generalizations to boards of size
n× n. Such generalizations for games like chess, however, seem somewhat ar-
tificial. In any case, for these generalized games we have the following decision
problem: given a legal placement of the game pieces and a player, does this
player have a winning strategy? If it is Alice’s turn to move, and her opponent
is Bob, then this question can be expressed as

∃ move for Alice ∀ move for Bob ∃ . . . : Alice wins.

This representation has a certain similarity to quantified Boolean expressions.
We will not present any proofs that particular generalized games lead to
PSPACE-complete problems here. The fact that these problems are PSPACE-
complete perhaps helps explain why for the usual sizes of boards it has not
yet been possible to determine which player has a winning strategy.

13.4 Nondeterminism and Determinism in the Context of Bounded Space 191

Because of the padding technique used in the proof, we want to show that
the word problem for context-sensitive grammars WCSL is PSPACE-complete.
For WCSL an instance consists of a context-sensitive grammar G and a word
w. The question is whether w can be generated by G.

Theorem 13.3.3. WCSL is PSPACE-complete.

Proof. Let (G, w) be an instance of WCSL. The remarks before Theorem 13.2.3
show that WCSL ∈ NTAPE(n). In Section 13.4 we will show that NTAPE(n) ⊆
DTAPE(n2). Thus WCSL ∈ PSPACE.

Now suppose L ∈ PSPACE, and let M be a deterministic Turing machine
that decides L in polynomial time using space bounded by p(n) ≥ n. From L
we construct a decision problem Long(L). For some special symbol Z that has
not yet been used, Long(L) contains all strings xZp(|x|)−|x| with x ∈ L. That
is, to each word x ∈ L we add p(|x|)−|x| copies of the symbol Z. The length of
this new word is then p(|x|). We can choose p to be of such a simple form that
checking whether the input has the right number of special symbols at the end
can be done in p(|x|) space. After that, all we need to do is decide whether
x ∈ L. By assumption, this is possible using p(|x|) space. Because of the
artificial lengthening of the instances, it follows that Long(L) ∈ DTAPE(n).
So by Theorem 13.2.3, Long(L) is a context-sensitive language. The proof of
Theorem 13.2.3 is constructive and shows how a context-sensitive grammar
G(L) for Long(L) can be constructed from the corresponding linear space-
bounded Turing machine M . Since the length of the description of M only
depends on L and p and not on the input x, the time needed to compute G(L)
is a constant with respect to |x|. So from x we can compute G(L) and the
word w = xZp(|x|)−|x| in polynomial time. By construction x belongs to L if
and only if w can be generated by G(L). ��

13.4 Nondeterminism and Determinism in the Context

of Bounded Space

To simulate nondeterministic computations deterministically we simulate all
of the exponentially many computation paths. This requires exponential com-
putation time. But in terms of space use, we “only” need to keep track of
which paths have already been simulated. That this doesn’t require exponen-
tial space is not really very surprising.

Before we formulate this result, we want to point out a technical detail.
Here and in Section 13.5, for a space bound s(n) we want to be able to reserve
a portion of the tape with s(n) cells. This should be possible with s(n) space
available. Nevertheless, although this is possible for many important functions
s(n), it is not possible for all of them. So we will use the following definition
to separate out the “good” space bounds.

192 13 Further Topics From Classical Complexity Theory

Definition 13.4.1. A function s : N → N is called space constructible if
there is an s(n)-space-bounded deterministic Turing machine which for any
input x computes the binary representation of s(|x|).

If we have s(|x|) in binary representation, then we can mark a storage
region of length s(|x|) in space s(|x|).

Theorem 13.4.2 (Savitch’s Theorem). If the function s(n) ≥ log n is
space constructible, then

NTAPE(s(n)) ⊆ DTAPE(s(n)2).

Proof. Let L be a decision problem in NTAPE(s(n)), and let M be a nondeter-
ministic Turing machine that decides L in space s(n). We will build a Turing
machine M ′ that decides L deterministically in space O(s(n)2). The theorem
then follows by Remark 13.2.2.

On input x, the Turing machine M ′ first computes the binary represen-
tation of s(|x|) and always describes configurations of M as configurations
with s(|x|) tape cells. This is possible because s is space constructible. By
Remark 13.2.4 and the assumption that s(n) ≥ log n, we can assume that
M runs in s(n) space and 2c·s(n) time for some constant c ∈ N. Later we
will describe how we can deterministically check using O((j + 1)s(n)) space
whether M can get from configuration K1 to configuration K2 in 2j steps.
The claim follows by applying this to the initial configuration K0(x), the ac-
cepting configuration Ka, and j = c · s(n). For this we assume that there is
only one accepting configuration. This is easily achieved by having the Turing
machine erase the tape (formally by writing blank symbols in each cell) and
moving the tape head to tape cell 1 before accepting.

For j = 0 the claim is simple, since we can generate from K1 all possible
successor configurations and compare them with K2. For the inductive step
we apply the predicate Tj(K1, K2) from Section 13.3, which is true if K2 can
be reached in 2j steps from K1. Then

Tj(K1, K2) = ∃K3 : (Tj−1(K1, K3) ∧ Tj−1(K3, K2)) .

We use extra space only to store j and to try out all K3 in lexicographical
order. So we need space for two configurations and for j. The configurations
K1 and K2 are given. For each K3 we use O(j · s(n)) space to check whether
Tj−1(K1, K3) is true. In the negative case we generate the lexicographic suc-
cessor of K3 and work with it. In the positive case we use the same space to
check whether Tj−1(K3, K2) is true. If not, then we proceed as above; and if so,
then Tj(K1, K2) is true. If all K3 are tested without success, then Tj(K1, K2)
is not true. Together for the test of Tj we require space for the test of Tj−1

and extra space O(s(n)). So the total space required is O((j + 1) · s(n)) and
the theorem is proved. ��

Corollary 13.4.3. PSPACE = NPSPACE. ��

13.5 Nondeterminism and Complementation with Precise Space Bounds 193

Thus with respect to the resource of space, the analogous hierarchy to the
polynomial hierarchy collapses to the lowest level, namely to PSPACE.

13.5 Nondeterminism and Complementation with

Precise Space Bounds

The results from Section 13.4 can be interpreted to say that to simulate non-
determinism deterministically, a bit more space suffices, but we believe that
for some tasks we need much more time. So it makes sense to investigate
complexity classes for fixed space bounds s(n). Starting with the complexity
classes DTAPE(s(n)), NTAPE(s(n)), and co-NTAPE(s(n)), and working analo-
gously to the polynomial hierarchy we can define a sequence of space-bounded
complexity classes. While we suspect that each class in the polynomial hier-
archy is distinct, this is not that case for these space-bounded complexity
classes even for a fixed space bound. We show that for “nice” functions with
s(n) ≥ log n, NTAPE(s(n)) = co-NTAPE(s(n)), and so the “hierarchy” that
we had imagined collapses to the first level. The question of whether in fact
DTAPE(s(n)) = NTAPE(s(n)) has not yet been answered. For the special case
that s(n) = n this is the LBA problem (linear bounded automaton problem),
namely the question of whether the word problem for context-sensitive gram-
mars can be solved deterministically in linear space. In order to prove the
theorem mentioned above, we need to “efficiently” simulate a nondeterminis-
tic algorithm co-nondeterministically. The efficiency required, however, is only
in terms of space and not in terms of time.

Theorem 13.5.1 (Immerman und Szelepcsényi). If the function s(n) is
space constructible and s(n) ≥ log n, then

NTAPE(s(n)) = co-NTAPE(s(n)) .

Proof. It suffices to show that NTAPE(s(n)) ⊆ co-NTAPE(s(n)) since then
co-NTAPE(s(n)) ⊆ co-co-NTAPE(s(n)) = NTAPE(s(n)) follows immediately.

So let L be a language in NTAPE(s(n)), and let M be a nondetermin-
istic Turing machine that decides L in space s(n). Because of the space-
constructibility of s(n) ≥ log n and Remark 13.2.4, we can assume that on
every computation path M stops after at most 2c·s(n) computation steps for
some constant c ∈ N. If we could simulate every computation path determin-
istically in space s(n), then we could improve Savitch’s Theorem and solve
the LBA problem.

Before we explain the proof idea we want to treat a few technical details.
For an input x of length n, configurations of M will always be described for
s(n) space. Because s(n) is space-constructible, we can mark off the corre-
sponding regions on the tape. We will use counters that can take on values
from {0, . . . , 2c·s(n)}. Each counter can be stored in c · s(n) + 1 tape cells.

194 13 Further Topics From Classical Complexity Theory

So as long as we store no more than constantly many counters and configu-
rations at one time, the required space will be bounded by O(s(n)) and by
Remark 13.2.2, this is equivalent to space bounded by s(n).

In order to prove that L ∈ co-NTAPE(s(n)) we must reject inputs x ∈ L
on every computation path and we must accept inputs x /∈ L on at least one
computation path. On some paths the nondeterministic algorithm M ′ for L
will be certain that x ∈ L and halt with the answer “x ∈ L”. For L, “x ∈ L” is
equivalent to rejecting. On some paths M ′ will not be certain whether x ∈ L
or x /∈ L. Since we must make the correct decision for all x ∈ L, algorithm
M ′ will halt with the conclusion “x ∈ L” on these paths. This will guarantee
a correct decision whenever x ∈ L. Furthermore, M ′ must guarantee for any
x /∈ L there is at least one path on which one can be sure that x /∈ L.

When can we be sure that x /∈ L? Only if we know that none of the
configurations that can be reached from the initial configuration K0(x) for x
are accepting. Suppose we know the number of configurations A(x) that can
be reached from K0(x). Then we could proceed as follows. We step through the
configurations of M in lexicographic order. To do this we only need to store
the current configuration K. Then we check nondeterministically whether it
is possible to get from K0(x) to K in 2c·s(n) steps. This requires space for
a counter and two configurations that contain the amount of computation
time already used, the configuration reached K ′, and a nondeterministically
generated configuration K ′′. If K ′′ is not an immediate successor of K ′, then
we halt with the output “x ∈ L”. Now consider the case that the configuration
K ′′ is an immediate successor of K ′. If K ′′ �= K, then we continue the process
with K ′ := K ′′ and a new nondeterministically generated K ′′. If we find a
reachable accepting configuration, then we stop with “x ∈ L”. This process
will stop after at most 2c·s(n) steps. We use another counter that starts with
the value 1 for the initial configuration. For each other configuration K that
we identify as reachable but not accepting, we increase the counter by one.
If we have tried out all possible configurations K and haven’t stopped, then
we compare the configuration counter z with A(x). In any case z ≤ A(x). If
z < A(x), then we have failed to classify at least one reachable configuration
as reachable with our nondeterministic algorithm. So our attempt to identify
all reachable configurations has failed and we halt and output “x ∈ L”. On
the other hand, if z = A(x), we have identified all reachable configurations
and determined that none of them are accepting. In this case we are certain
that x /∈ L and we can output this result. For every reachable configuration
there is a sequence of configurations of the length considered describing the
corresponding computation. So for x /∈ L there is at least one computation
path in the nondeterministic algorithm just described that leads to the result
“x /∈ L”.

We have proved the theorem if we can show that A(x) can be calculated
nondeterministically. The nondeterministic computation of a number means
that computation paths can be unsuccessfully terminated, that no path can

13.6 Complexity Classes Within P 195

provide an incorrect answer, and that at least one path must provide the
correct answer.

The new idea in this proof is the nondeterministic computation of A(x).
The method used is called inductive counting because we inductively compute
At(x) (for 0 ≤ t ≤ 2c·s(n)), the number of configurations that are reachable
from K0(x) in at most t steps. Clearly A0(x) = 1 since we have only the ini-
tial configuration. Now suppose we know At(x) and need to compute At+1(x).
We consider all configurations K in lexicographic order and count those that
are reachable in t + 1 steps. For each K and the correct value of At(x), we
check each configuration K ′ as described above to determine whether it can
be reached in t steps. Configuration K is reachable in at most t + 1 steps if
and only if it is one of the configurations reachable in at most t steps or an
immediate successor of one of these configurations. All attempts that do not
correctly identify all At(x) configurations that are reachable in at most t steps
are terminated unsuccessfully. In this way we never output an incorrect an-
swer. But there must be a computation path along which each time all At(x)
configurations that can be reached in at most t steps are correctly identified.
Along such paths it is correctly decided for each configuration K whether
K can be reached in at most t + 1 steps. In this case At+1(x) is correctly
computed. Together we have the desired nondeterministic algorithm for com-
puting A(x) and so a nondeterministic algorithm for L. The space constraints
are not exceeded because we never need to store more than constantly many
counters and configurations. ��

13.6 Complexity Classes Within P

By Theorem 13.2.5 DTAPE(log n) ⊆ NTAPE(log n) ⊆ P. We are interested
now in problems that are in P or in NTAPE(log n) but presumably not in
DTAPE(log n). It is not immediately clear why we should be interested in such
problems since practically speaking linear space is always available without
any difficulty. The reason for our interest is the so-called parallel computation
hypothesis which says that small space – in particular, logarithmic space – is
closely related to polylogarithmic time on computers with polynomially many
processors. This unexpected relationship will be considered in more detail in
Chapter 14. Problems that are in P but presumably not in DTAPE(log n) are
efficiently solvable but presumably do not “parallelize” well.

The investigation of the relationship between DTAPE(log n) and
NTAPE(log n) leads to an analogue of the NP �= P-problem. This analogy be-
comes our guiding principle. We can’t separate these classes, so we look for
their most difficult problems. By the remarks at the beginning of Chapter 10,
we can’t do this in terms of polynomial – more precisely polynomial time –
reductions. Within P it only makes sense to consider more restricted forms of
reductions. When investigating P and NP we allowed polynomial algorithms.
So for an investigation of the relationship between P and DTAPE(log n), also

196 13 Further Topics From Classical Complexity Theory

called LOGSPACE, the obvious thing to consider is algorithms that require only
logarithmically bounded space. According to our current definitions, however,
if we only allow logarithmic space, then our reductions can only compute
outputs with lengths that are logarithmically bounded in the length of the
input. This is not sufficient for building transformations from one problem
to another. To get around this problem, we will give our Turing machines a
write-only output tape, on which the output may be written from left to right.
The space used on the output tape is not considered when calculating space
bounds.

Definition 13.6.1. A decision problem A is log-space reducible to a decision
problem B, written A ≤log B, if there is a function f computable in logarithmic
space that takes instances of A to instances of B in such a way that

∀x : x ∈ A ⇔ f(x) ∈ B .

Just as we have been using the abbreviation polynomially reducible for
polynomial-time reducible, so now we will use the abbreviation logarithmically
reducible for reducible in logarithmic space. This doesn’t lead to confusion
since we can’t do meaningful computation in logarithmic time, and polynomial
space contains all of PSPACE.

Definition 13.6.2. Let C be a complexity class. A problem A is C-complete
with respect to logarithmic reductions (log-space complete) if A ∈ C and for
every B ∈ C, B ≤log A.

Since computations in logarithmic space can be simulated in polynomial
time, A ≤log B implies A ≤p B.

Logarithmic reductions have the properties that we expect of them:

• ≤log is transitive.
• If A ≤log B and B ∈ DTAPE(log n), then A ∈ DTAPE(log n).
• If C ⊇ DTAPE(log n), L is C-complete with respect to logarithmic reduc-

tions, L ∈ DTAPE(log n), then C = DTAPE(log n).

We omit the proofs of these properties which follow the same scheme that
we know from polynomial reductions. The only exception is that for an input
x and the transformation function f , f(x) cannot be computed and stored. So
whenever the jth bit of f(x) is needed, we compute it in logarithmic space,
forgetting the first j − 1 bits. Since f(x) has polynomial length, logarith-
mic space suffices to keep a counter that records the number of bits of f(x)
that have already been computed. To give these new notions some life, we
introduce two important problems, one of which is P-complete and the other
NTAPE(log n)-complete with respect to logarithmic reductions.

First we consider the circuit value problem CVP. An instance of the circuit
value problem consists of a circuit C over the operators AND, OR, and NOT,
and an input a for C. The circuit C has a designated output gate. We must
compute the value C(a) of this gate of C on input a. The practical significance
of this problem is clear.

13.6 Complexity Classes Within P 197

Theorem 13.6.3. CVPis P-complete with respect to logarithmic reductions.

Proof. CVP ∈ P since we can evaluate the gates of C in topological order.
Now let A ∈ P and let M be a deterministic Turing machine that decides

A in polynomial time p(n). Let x be an instance of length n for which we
must check whether x ∈ A. At this point we will make use of a simple result
that we will prove in Theorem 14.2.1, namely, that from a description of M
we can compute in logarithmic space a circuit Cn such that for all inputs of
length n, x ∈ A if and only if Cn(x) = 1. So our reduction transforms x into
(Cn, x) and x ∈ A if and only if (Cn, x) ∈ CVP. ��

This result is not surprising. If every circuit can be parallelized, that is, can
be rewritten with small depth, then every polynomial-time solvable problem
can be parallelized well.

One of the first algorithms that one learns is depth-first search (DFS) on
directed and undirected graphs. Depth-first search can be used to solve the
problem of directed s-t-connectivity (DSTCON) – the problem of determining
whether there is a path from vertex s (source) to vertex t (terminal) in a
directed graph G – in linear time.

Theorem 13.6.4. DSTCON is NTAPE(log n)-complete with respect to loga-
rithmic reductions.

Proof. First we show that DSTCON ∈ NTAPE(log n). Starting with z = 1 and
v = s we can store a counter z and a vertex v. These are updated by replacing
v by one of the vertices from its adjacency list and increasing the counter z
by 1. If we ever have v = t, then the input is accepted. If the counter ever
reaches z = n without encountering t, then the input is rejected. Clearly this
algorithm accepts precisely those graphs that have a path from s to t.

Now suppose L ∈ NTAPE(log n) and M is a nondeterministic Turing ma-
chine that decides L in space log n. We can assume that there is only one
accepting configuration Ka. For every input x there is a configuration graph
G(x) with a vertex for each configuration of M . The graph has an edge from
K to K ′ if M on input x can get from K to K ′ in one step. Our instance
f(x) of DSTCON will be the graph G(x), the source vertex s corresponding
to the initial configuration on input x and the terminal vertex t = Ka. By
construction it is clear that x ∈ L if and only if there is a path form s to t
in G(x). Furthermore, the function f can be generated in logarithmic space.
The configurations have length O(log n), so they can be stored in logarith-
mic space. For each configuration the machine M induces an adjacency list of
immediate successor configurations. ��

By the Theorem of Immerman and Szelepcsényi, DSTCON is also con-
tained in co-NTAPE(log n). This is surprising since we have a hard time imag-
ining the nondeterministic algorithm for DSTCON. Only the proof of the
theorem shows us how to obtain such an algorithm. On the other hand,
it is reasonable to suspect that DSTCON /∈ DTAPE(log n) since otherwise
DTAPE(log n) = NTAPE(log n).

198 13 Further Topics From Classical Complexity Theory

13.7 The Complexity of Counting Problems

For many problems the optimization, evaluation, and decision variants are
of practical importance. Often we can restrict our attention to the decision
variant because the three variants are NP-equivalent (see Section 4.2). Now
we add a further facet to these problems by considering a variant as counting
problem.

If we want to check whether the specification S and the realization C of a
circuit agree, then we can check whether S ⊕ C is satisfiable. The number of
satisfying assignments for S ⊕C gives the number of inputs on which C does
not function as specified. We will let #Sat denote the problem of computing
the number of satisfying assignments for a circuit. Many of the problems that
we have considered have counting variants that can be defined in natural ways.
Not all of them have practical significance like #Sat.

The counting variants of problems with NP-complete decision variants are
clearly NP-hard. If we can compute the number of solutions, then we can
decide if there are any. More interesting is the case of polynomially solvable
problems for which the corresponding counting problem is difficult.

Recall the marriage problem. We can consider an instance as a bipartite
graph G on two n-element sets of vertices U and V . An edge {u, v} indicates
that u and v can form a team (happy marriage). A perfect matching consists of
n pairs so that each vertex is in exactly one pair. Many textbooks on efficient
algorithms contain polynomial-time algorithms that solve this problem. For
the problem of computing the number of perfect matchings (#PM), there is
no known polynomial-time algorithm. How can we establish the difficulty of
#PM in terms of complexity theory? We need a complexity class that for
counting problems serves the role that NP served for decision problems.

Definition 13.7.1. The complexity class #P (read: sharp P or number P)
contains all counting problems #A for which there is a polynomial-time
bounded nondeterministic Turing machine that for each instance x has ex-
actly as many accepting paths as there are solutions for x.

Remark 13.7.2. #Sat ∈ #P and #PM ∈ #P.

Proof. For #Sat we nondeterministically generate an input a ∈ {0, 1}n for
the circuit S (each a on exactly one path) and check whether a is a satisfying
assignment for S.

Bipartite graphs G can be described by 0-1 matrices M where the rows
represent the vertices in U and the columns the vertices in V . We let Mu,v = 1
if and only if {u, v} is an edge in G. The number of perfect matchings in G is
then equal to the permanent of M , defined by

perm(M) :=
∑

π∈Sn

M1,π(1) · M2,π(2) · . . . · Mn,π(n) .

13.7 The Complexity of Counting Problems 199

Each permutation π ∈ Sn corresponds to a possible perfect matching, and
each product has the value 1 if this matching exists in G, and a value of
0 otherwise. #PM ∈ #P. The witnessing nondeterministic Turning machine
generates each permutation π on exactly one computation path and accepts if
the value of the product corresponding to π is 1. This Turing machine accepts
on the computation path for π if and only if π is a perfect matching. ��

Definition 13.7.3. A counting problem #A is #P-complete if #A ∈ #P and
for every problem #B ∈ #P, #B ≤T #A.

Since the result of a counting problem is a number, it is not surprising that
we use Turing reductions in this definition. Of course, if there is a function
f that maps instances x of #B to instances f(x) of #A in such a way that
x and f(x) have the same number of solutions, then #B ≤T #A. In the
proof of Cook’s Theorem there is a bijective correspondence between accepting
computation paths of the given Turing machine and satisfying assignments of
the Sat formula that is constructed. This proves the first part of the following
theorem.

Theorem 13.7.4. #Sat and #PM are #P-complete. ��

We won’t prove the claim for #PM (Valiant (1979)). It shows that the com-
putation of the number of perfect matchings (i.e., of the permanent) is only
possible in polynomial time if NP = P. Thus the theory of #P-completeness
fulfills the expectations we had for it.

We end our considerations with the remark that we can decide in poly-
nomial time whether the number of perfect matchings is even or odd. This
problem is equivalent to the computation of perm(M) mod 2. Since in Z2

−1 = 1, the permanent and determinant are the same. It is well-known from
linear algebra that the determinant of a matrix can be computed in polyno-
mial time.

14

The Complexity of Non-uniform Problems

14.1 Fundamental Considerations

Although we have not made this explicit, our considerations to this point have
been directed toward software solutions. If we want to design an efficient algo-
rithm for an optimization problem like TSP or Knapsack, we are thinking of
an algorithm that works for arbitrarily many cities or objects. When designing
hardware, however, the situation is different. If a processor works with 64-bit
numbers, then a divider for 64-bit numbers is supposed to compute the first
64 bits of the quotient.

The corresponding computational model is the circuit. Circuits for inputs
of length n have Boolean variables x1, . . . , xn and Boolean constants 0 and
1 as inputs. They can be described as a sequence G1, . . . , Gs of gates. Each
gate Gi has two inputs Ei,1 and Ei,2 that must be among the previous gates
G1, . . . , Gi−1 and the inputs. The gate Gi applies a binary operation opi to
its inputs. The functions that are computed by such circuits arise naturally.
The input variables xi and the Boolean constants 0 and 1 can be considered
as functions as well. If the inputs to a gate Gi are realized by the functions
gi,1 and gi,2, then gate Gi is realized by the function

gi(a) := gi,1(a) opi gi,2(a) .

Circuits can be represented more visually as directed acyclic graphs. The
inputs and gates form the vertices of the graph. Each gate has two in-coming
edges representing its two inputs. In the general case, we must distinguish
between the first and second input. If we restrict our attention to symmetric
operators like AND, OR, and EXOR, then this is unnecessary. A circuit C
realizes the function f = (f1, . . . , fm) : {0, 1}n → {0, 1}m if each component
function fj is realized by an input or a gate. A circuit for addition on three
bits is represented in Figure 14.1.1. The sum bit is computed in G4 and the
“carry bit” in G5.

For the evaluation of the efficiency of circuits two different measures are
available. The circuit size (or just size) of a circuit is equal to the number

202 14 The Complexity of Non-uniform Problems

AND G2

G3

G5

G4

x1 x2 x3

EXOR

AND EXOR

OR

G1

Fig. 14.1.1. A 3-bit adder.

of gates in the circuit and forms a measure of the hardware costs and the
sequential computation time. We imagine that the gates are evaluated in the
given order, and that the evaluation of each gate has cost 1. In reality, circuits
are “parallel processors”. In our example in Figure 14.1.1, gates G1 and G2 can
be evaluated simultaneously, and once G2 has been evaluated, G3 and G4 can
be evaluated simultaneously. The depth of a gate is the length of the longest
path from an input to that gate. All the gates with depth d can be evaluated
simultaneously in the dth time step. The circuit depth (or just depth) of a
circuit is the maximal depth of a gate in a given circuit. Our example adder
has size 5 and depth 3.

Just as we have been concentrating our attention on decision problems, so
here we will be primarily interested in Boolean functions f : {0, 1}n → {0, 1}
that have a single output. For the design of hardware, a particular input size
may be important, but an asymptotic complexity theoretical analysis can only
be based on a sequence f = (fn) of Boolean functions. A circuit family or
sequence of circuits C = (Cn) computes f = (fn) if each fn is computed by Cn.
This leads to the following relationship between decision problems on {0, 1}∗

and sequences of Boolean functions f = (fn) with fn : {0, 1}n → {0, 1}. For
each decision problem there is a corresponding sequence of functions fA =
(fA

n) with
fA

n (x) = 1⇔x ∈ A .

On the other hand for any f = (fn) the decision problem Af can be defined
by

x ∈ A⇔ f|x|(x) = 1 .

On the basis of this relationship, in this chapter we will only consider inputs
over the alphabet {0, 1}.

For a sequence f = (fn) of Boolean functions we want to analyze the
complexity measures of size and depth. So let Cf (n) denote the minimal size

14.1 Fundamental Considerations 203

of a circuit that computes fn and let Df (n) be defined analogously for circuit
depth. In Chapter 2 we claimed that the time complexity of a problem is
a robust measure. Does this imply that the time complexity of A and the
circuit size of fA are related? Boolean functions can always be represented
in disjunctive normal form. A naive analysis shows that their size and depth
are bounded by n · 2n and n + �log n�, respectively. This is true even for
sequences of functions (fA

n) for which A is not computable. There are even
noncomputable languages that for each length n contain either all inputs of
that length or none of them. Then fA

n is a constant function for each n and
so has size 0.

Here the difference between software solutions (algorithms) and hardware
solutions like circuit families becomes clear. With an algorithm for inputs
of arbitrary length we also have an algorithm for any particular length n.
On the other hand, we need the entire circuit family to process inputs of
arbitrary length. An algorithm has a finite description, as does a circuit, but
what about a circuit family? For a noncomputable decision problem A the
sequence of DNF circuits just described is not even computable.

An algorithm is a uniform description of a solution procedure for all input
lengths. When we are interested in such solutions we speak of a uniform
problem. A circuit family C = (Cn) only leads to a uniform description of a
solution procedure if we have an algorithm that can compute Cn from n. It
is possible for there to be very small circuits Cn for fn that are very hard
to compute and larger circuits C ′

n for fn that are much easier to compute.
A circuit family C = (Cn), where Cn has size s(n), is called uniform if Cn

can be computed from n in O(log s(n)) space. In this chapter when we speak
of uniform families of circuits we will be content to show that Sn can be
computed in time that is polynomial in s(n). It is always easy, but sometime
tedious, to describe how to turn this into a computation in logarithmic space.

Every decision problem A on {0, 1}∗ has a non-uniform variant consisting
of the sequence fA = (fA

n) of Boolean functions. The non-uniform complex-
ity measures are circuit size and circuit depth where non-uniform families of
circuits are allowed. A non-uniform divider can be useful. If we need a 64-bit
divider, it only needs to be generated or computed once and then can be used
in many (millions of) processors. So we are interested in the relationships be-
tween uniform and non-uniform complexity measures. In Section 14.2 we will
simulate uniform Turing machines with uniform circuits in such a way that
time is related to size and space to depth. Circuits can solve noncomputable
problems, so they can’t in general be simulated by Turing machines. We will
introduce non-uniform Turing machines that can efficiently simulate circuits.
Once again time will be related to size, and space to depth. Together it turns
out that time for Turing machines and size for circuits are very closely related.
The relationships between space and depth (and so parallel computation time)
are also amazingly tight, but circuits do not provide a model of non-uniform
computation that asymptotically exactly mirror the resource of storage space.
Such a model will be introduced in Section 14.4.

204 14 The Complexity of Non-uniform Problems

For complexity classes that contain P, one can ask if all of their problems
can be solved by circuits of polynomial size. In Section 14.5 we will show that
this is the case for the complexity class BPP. If a similar result holds for NP as
well, we obtain a new possibility for dealing with difficult problems. But this
is only possible, as we will show in Section 14.7, if the polynomial hierarchy
collapses to the second level. Before that we present a characterization of
non-uniform complexity classes in Section 14.6.

Circuits form a fundamental hardware model. Only uniform circuits
lead to an efficient algorithmic solution. New aspects of the complexity
of problems are captured by the non-uniform complexity measures of
circuit size and circuit depth. From a practical perspective, it is impor-
tant to know if a problem is difficult because it requires large circuits
or because it is not possible to compute small circuits efficiently.

14.2 The Simulation of Turing Machines By Circuits

The goals of our considerations can be summarized as follows:

• Turing machines with small computation time can be simulated by uniform
circuits with small size.

• Turing machines that use little space can be simulated by uniform circuits
of small depth.

The first result compares the computation time of Turing machines with the
time for the evaluation of a circuit. The second result implies that small space
requirement makes possible an efficient computation via parallel processing
and is a basis for the parallel computation hypothesis about the tight connec-
tion between storage space and parallel computation time.

What is the difficulty in simulating a Turing machine step by step with a
circuit? Turing machines can incorporate branches (if-statements), and thus
which tape cell is read at time t may depend on the input. It is true that
configurations are only locally modified at each step, but where this modifi-
cation occurs depends on the input. Oblivious Turing machines (see Defini-
tion 5.4.1) always read the same tape cell in the tth step regardless of the
input. As we showed in Lemma 5.4.2, Turing machines can be simulated by
oblivious Turing machines with only a quadratic slow-down. We mentioned
there that one can actually get by with a logarithmic slow-down factor, i.e.,
that time O(t(n) log(t(n))) suffices for the simulation of any Turing machine
by an oblivious Turing machine. So we will investigate how we can simulate
oblivious Turing machines step by step with circuits.

The start configuration can be described by the input variables and
Boolean constants at no cost. Assume we have described the first t − 1 com-
putation steps and consider step t. Only the state and the symbol on the
tape cell being read may change in this step. Since the state space Q and

14.2 The Simulation of Turing Machines By Circuits 205

the tape alphabet Γ are finite, we only need constantly many bits of the
description of the configuration to compute the new state and the new con-
tents of the tape cell. More concretely, we are evaluating the Turing program
δ : Q × Γ → Q × Γ × {−1, 0,+1}, where the third component is constant
for a given t since we are considering only oblivious Turing machines. Even
the disjunctive normal form realization of a circuit for δ has only constant
size with respect to the input length n. This constant will depend only on the
complexity of δ. Together we obtain a circuit of size O(t(n)) to simulate t(n)
steps of a Turing machine. The circuit is uniform if the tape head position
in step t can be efficiently computed, as is the case for the oblivious Turing
machines mentioned above. In summary, we have the following result.

Theorem 14.2.1. An oblivious t(n) time-bounded Turing machine can be
simulated by uniform circuits of size O(t(n)). A t(n) time-bounded Turing
machine can be simulated by uniform circuits of size O(t(n) log t(n)). ��

The corresponding circuits also have depth O(t(n) log(t(n)). To get circuits
with smaller depth we need a new idea.

Theorem 14.2.2. An s(n) space-bounded Turing machine can be simulated
by uniform circuits of depth O(s∗(n)2), where s∗(n) := max{s(n), �log n�}.

Proof. For space-bounded Turing machines we assume, as was described in
Section 13.2, that the input is on a read-only input tape. The number of
different configurations is bounded by k(n) = 2O(log n+s(n)) = 2O(s∗(n)). We
consider the corresponding directed configuration graph that contains a ver-
tex for each configuration. The edge set E(x) depends on the input x. The
edge (v, w) belongs to E(x) if the Turing machine on input x can go from
configuration v to configuration w in one step. Let the adjacency matrix of
this graph be A(x) = (av,w(x)). It is important that av,w(x) only depends on
xi in an essential way when the ith tape cell is being read in configuration v.
So av,w(x) is one of the functions 0, 1, xi or xi. Thus each of the functions
av,w(x) can be computed by a circuit of depth 1. Now let at

v,w(x) = 1 if and
only if on input x the configuration w can be reached from configuration v in t
steps. For t′ ∈ {1, . . . , t− 1} we must go from configuration v to configuration
u and then in t − t′ steps from configuration u to w. Thus

at
v,w(x) =

∨
u

at′

v,u(x) ∧ at−t′

u,w (x) ,

where
∨

represents disjunction. The matrix A is the Boolean matrix product
of At′ and At−t′ . The depth needed to realize this matrix product is 1 +
�log k(n)� = O(s∗(n)). Each of the conjunctions requires depth 1, and for each
of the disjunctions a balanced binary tree can be used. Again from Section 13.2
we know that we reach an accepting configuration only if we can reach it in
k(n) ≤ 2�log k(n)� steps. So we compute A2i

for all 1 ≤ i ≤ �log k(n)� with
�log k(n)� = O(s∗(n)) matrix multiplications. Finally we check if the input x

206 14 The Complexity of Non-uniform Problems

is accepted with a disjunction of all a2�log k(n)�

v0,w (x) for the initial configuration
v0 and the accepting configurations w. The depth of this circuit is bounded
by

1 + (1 + �log k(n)�) · �log k(n)� + �log k(n)� = O(s∗(n)2) .

The corresponding circuits are uniform. The behavior of the Turing machine
only plays a role in the computation of the av,w(x). ��

It is not known how to simulate Turing machines with small time and small
space bounds with circuits of small size and small depth simultaneously. Most
likely there are no such simulations.

14.3 The Simulation of Circuits by Non-uniform Turing

Machines

Circuit families C = (Cn) form a non-uniform computation model because we
are not concerned with how one comes up with circuit Cn for input length n.
For a Turing machine to be able to simulate a circuit family it must also have
free access to some information that depends on the length of the instance n =
|x| but not on the contents of the instance x. A non-uniform Turing machine is
a Turing machine with two read-only input tapes. The first input tape contains
the instance x, and the second input tape contains some helping information
h(|x|) that is identical for all inputs of length n. Because of the second input
tape, the number of configurations of a non-uniform Turing machine that
visits at most s(n) tape cells is larger by a factor of h(n) than the number for
a normal Turing machine, namely 2Θ(log n+s(n)+log h(n)). Frequently the second
input tape is denoted as an oracle tape and the help as an oracle. The results of
Section 14.2 can be generalized to the situation where we simulate non-uniform
Turing machines with (non-uniform) circuits. The help h(n) represents for Cn

a constant portion of the input.
We will now show the following simulation results which go in the other

direction from the results of Section 14.2:

• Small circuit families can be simulated by fast non-uniform Turing ma-
chines.

• Shallow circuit families can be simulated by non-uniform Turing machines
with small space requirements.

The latter of these is the second support for the parallel computation hypoth-
esis.

We will use the following notation for circuit families C = (Cn):

• s(n) for the size of Cn and s∗(n) for max{s(n), n},
• d(n) for the depth of Cn and d∗(n) for max{d(n), �log n�},
• fn for the function computed by Cn,
• Af for the decision problem corresponding to f = (fn).

14.3 The Simulation of Circuits by Non-uniform Turing Machines 207

Theorem 14.3.1. The circuit family C = (Cn) for a decision problem Af

can be simulated by a non-uniform Turing machine with two work tapes in
time O(s∗(n)2) and space O(s∗(n)).

Proof. For our help we let h(n) be a description of the circuit Cn. This contains
a list of all gates, which are represented as triples giving the operator, the first
input, and the second input. For each input we note first the type (constant,
input bit, or gate) and then its number. The length of this description is
O(s(n) log s∗(n)).

The Turing machine now processes the gates in their natural order. The
first work tape is used to store the values of the previously evaluated gates.
The second work tape will store a counter used to locate positions on the first
work tape or the input tape. The help tape records where the input values
for each gate is to be found. If the Turing machine knows the input values
and the operator of a gate, then it can compute the output of this gate and
append it to the list of previously known outputs. To evaluate the output
of a gate, the Turing machine first retrieves the values of its inputs. For a
constant this information is given directly on the help tape. Otherwise the
index of the gate or input bit is copied from the help tape to the second tape.
If the input is another gate, the head of the first work tape is brought to the
left end of the tape. While we repeatedly subtract 1 from the counter stored
on the second work tape until we reach the value 1, the tape head on the
first tape is moved one position to the right each time. At the end of this
procedure, the head on the first work tape is reading the information we are
searching for. For an input bit we search analogously on the input tape. It
is easy to see that for gate i or bit i, O(i) = O(s∗(n)) steps suffice. Since
we must process s(n) gates each with two inputs, the entire time is bounded
by O(s(n) · s∗(n)) = O(s∗(n)2). On the first work tape we never have more
than s(n) bits, and on the second work tape the number of bits is bounded
by s∗(n). ��

If we want to obtain a Turing machine with one work tape, we could use
the simulation result mentioned in Section 2.3 and obtain a time bound of
O(s∗(n)4). But in this case it is possible to give a direct description of a
Turing machine with a time bound of O(s∗(n)2 log s∗(n)), but we will omit
these details. If the given circuit family is uniform, then for an input of length
n we can first compute Cn and then apply the simulation we have described.

Theorem 14.3.2. The circuit family C = (Cn) for a decision problem Af

can be simulated by a non-uniform Turing machine in space O(d∗(n)).

Proof. We no longer have enough space to store the results of all the gates.
But this is only necessary if the results of some gates are used more than once.
This is not the case if the underlying graph of the circuit is a tree. It is possible
to “unfold” circuits in such a way that they become trees. To do this we go
through the graph of the circuit in topological order. As we encounter a vertex

208 14 The Complexity of Non-uniform Problems

with r immediate successors we replace it and all of its predecessors with r
copies. This increases the size but not the depth of the circuit. Circuits for
which all gates have at most one successor are called formulas. In Figure 14.3.1
we show the result of unfolding the circuit from Figure 14.1.1.

x3x1 x2 x1 x2 x3 x2x1

AND

EXOR EXOR

EXOR

AND

OR

Fig. 14.3.1. The 3-bit adder as a formula.

As help for inputs of length n we use a formula Fn of depth d(n) for fn. Its
description contains a list of all gates in the order of a post-order traversal.
For a tree with one vertex this order consists of that vertex. Otherwise it
consists of the results of a post-order traversal of the left subtree followed
by that of the right subtree, followed by a description of the root. Gates will
once again be described as triples of operation, left input, and right input. It is
important that because we are using this order we will not need the numbers
of the inputs that are gates. This will be seen in the proof of correctness.
Formulas of depth d(n) have at most 2d(n) − 1 gates, each of which can be
described with O(log n) bits. So all together the length of the description is
O(2d(n) log n).

The Turing machine now processes the gates using post-order traversal.
The work tape will be used to store the sequence of gate outputs that have
not yet been used by their successor. Furthermore, as in the proof of Theo-
rem 14.3.1 we use O(log n) space to locate values on the input tape. But how
do we find values of the inputs to a gate? Because they are processed in the
order of a post-order traversal, the left and right subtrees of a gate are pro-
cessed immediately before that gate. The roots of these subtrees are the only
gates whose values have not yet been used. So the values we need are at the
right end of the list of gate outputs and the Turing machine works correctly.

Finally we show by induction on the depth d that there are never more
than d outputs stored on the work tape. This implies that the space used is
bounded by O(log n+d(n)) = O(d∗(n)). The claim is clearly true when d = 1.
Now consider a formula of depth d > 1. By the inductive hypothesis, d − 1

14.4 Branching Programs and Space Bounds 209

tape cells are sufficient to evaluate the left subformula. This result is stored
in one cell, and along with the at most d − 1 tape cells needed to evaluate
the right subformula, at most d tape cells are required. In the end only two
tape cells are being used, and after evaluation of the root, only one tape cell
is being used. ��

If the given circuit family is uniform, then the information about a gate can
be computed in space O(log 2d(n)) = O(d(n)). So in this case even a uniform
Turing machine can get by with space O(d∗(n)).

There are close connections between circuit families and non-uniform
Turing machines, and between Turing machines and uniform families
of circuits. Circuit size is polynomially related to computation time,
and circuit depth is polynomially related to space.

14.4 Branching Programs and Space Bounds

Now we want to introduce a non-uniform model of computation, the size of
which characterizes the space used by non-uniform Turing machines asymp-
totically exactly. This model of computation has roots not only in complexity
theory but also as a data structure for Boolean functions. For this reason there
are two names commonly given to this model: branching program and binary
decision diagram (abbreviated BDD).

A branching program works on n Boolean variables x1, . . . , xn and has only
two types of elementary commands, which are represented as the vertices of
a graph. A branching (or decision) vertex v is labeled with a variable xi and
has two out-going edges: one labeled 0, the other labeled 1. If v is reached
in a computation, then the edge leaving v corresponding to the value of xi is
used to arrive at the next vertex. An output vertex w is labeled with a value
c ∈ {0, 1} and has no out-going edges. If w is reached, then the computation
is complete and the value c is given as output. A branching program is a
directed acyclic graph consisting of branching vertices (also called internal
vertices) and output vertices (also called sinks).

Each vertex v in a branching program realizes a Boolean function fv in
the following way. To compute fv(a) we start at vertex v and carry out the
commands at each vertex until we reach a sink. For branching programs there
are two obvious complexity measures. The length of a branching program is
the length of the longest computation path in the branching program and is
a measure of the worst-case time required to evaluate the function. The size
of a branching program is the number of vertices, and the branching program
complexity BP(f) of a Boolean function f is defined as the minimal size of
a branching program that computes f . This is the complexity measure that
we will be interested in here. Figure 14.4.1 contains a branching program the
input vertices of which realize the two output bits for the addition of three
bits. To make the diagram more readable we have included two 1-sinks.

210 14 The Complexity of Non-uniform Problems

x2

x3

x1

0

x2 1

1 0 1

0

1
10

0
11

0

0

x1

1

1 0 1

0

x3

x2x2

Fig. 14.4.1. A branching program for the addition of three bits.

So why is there a tight connection between the size of branching pro-
grams and the space required by non-uniform Turing machines? To evaluate
fv it is sufficient to remember the currently reached vertex. On the other
hand, a branching program can directly simulate the configuration graph of a
space-bounded Turing machine used in the proof of Theorem 14.2.2. We will
formalize this in the theorem below, using BP∗(fn) to represent the larger of
BP(fn) and n, and letting s∗(n) = max{s(n), �log n�} just as before.

Theorem 14.4.1. The decision problem Af corresponding to f = (fn) can
be solved by a non-uniform Turing machine in space O(log BP∗(fn)).

Proof. For help on inputs of length n we use a description of a branching
program Gn of minimal size for fn. This description includes a list of the
vertices, where each vertex is described by its type (inner vertex or sink),
its number, and its internal information. For a sink the latter consists of the
value that is output by the sink, and for an inner vertex it consists of a
triple including the index of the variable to be processed, the index of the
0-successor, and the index of the 1-successor. Furthermore, we will always
let the vertex representing fn have index 1. In this way each of the BP(fn)
vertices has a description of length O(log BP∗(fn)). We use the work tape
to remember the current vertex, so at the beginning of the computation it
contains the number 1. If a sink is reached, then we make the correct decision
and stop the computation. Otherwise we search for the value of the variable to
be processed on the input tape. After that the new current vertex is known,
namely the xi-successor. We look for its information on the help tape and
update the current vertex index on the work tape. ��

Theorem 14.4.2. An s(n)-space bounded Turing machine can be simulated
by a branching program of size 2O(s∗(n)).

Proof. We already know that the number of different configurations of the
Turing machine on an input of length n is bounded by 2O(s∗(n)). The branching

14.5 Polynomial Circuits for Problems in BPP 211

program Gn has a vertex for each of the configurations that is reachable from
the start configuration. Accepting configurations are 1-sinks and rejecting
configurations are 0-sinks. An inner vertex for configuration K is labeled with
the variable xi that is being read from the input tape in configuration K.
The 0-child of this vertex is the configuration that is reached in one step
from K if xi = 0. The 1-child is defined analogously. Since we only consider
Turing machines that halt on all inputs, the graph is acyclic and we have a
branching program. The Boolean function describing the acceptance behavior
of the Turing machine on inputs of length n is realized by the vertex labeled
with the initial configuration. ��

What changes if the given Turing machine is non-uniform and the help
has length h(n)? The number of configurations and therefore the size of
the simulating branching program grows by a factor of h(n) ≤ 2�log h(n)�.
This has led to the convention of adding �log h(n)� to the space used
by a non-uniform Turing machine. Or we could instead define s∗∗(n) =
max{s(n), �log n�, �log h(n)�}. The term �log n� has the same function for
the input tape as the term �log h(n)� has for the help tape.

Corollary 14.4.3. An s(n)-space bounded non-uniform Turing machine can
be simulated by a branching program of size 2O(s∗∗(n)). ��

These results can be summarized as follows for the “normal” case that
s(n) ≥ log n, BP(fn) ≥ n, and h(n) is polynomially bounded:

Space and the logarithm of the branching program size have the same
order of magnitude.

For a language L ∈ NP, L ∈ P, or L ∈ NTAPE(log n), we can try to show
that L /∈ DTAPE(log n) by proving a superpolynomial lower bound for the
branching program size of the function fL = (fL

n). This is the most common
line of attack for such results. To this point, such lower bounds for branching
program size grow more slowly than quadratically (see Chapter 16).

14.5 Polynomial Circuits for Problems in BPP

We have already discussed several times that BPP is “not much larger” than
P. It is possible that BPP = P, but this is still an open question. Now we want
to offer some support for the claim that problems in BPP are not much more
difficult than problems in P. For a decision problem A ∈ BPP the Boolean
functions fA = (fA

n) can be computed by circuits of polynomial size. If these
circuits were uniform, then it would follow that BPP = P. But so far, only
non-uniform circuits for fA

n have been found. The trick is that for a BPP algo-
rithm we can choose the error-probability to be so low that by the pigeonhole
principle there must be an assignment for the random bits for which the BPP

212 14 The Complexity of Non-uniform Problems

algorithm makes no mistakes. We will choose this assignment of the random
bits as help for a non-uniform Turing machine which can then be simulated
by circuits as in Sections 14.2 and 14.3.

Theorem 14.5.1. Decision problems A ∈ BPP can be solved by polynomial-
time deterministic non-uniform Turing machines. The Boolean functions
fA = (fA

n) have polynomially bounded circuit size.

Proof. Since A ∈ BPP, by Theorem 3.3.6 there is a randomized Turing ma-
chine M that decides A in polynomial time p(n) with an error-probability
bounded by 2−(n+1). Now consider a 2n × 2p(n)-matrix such that the rows
represent the inputs of length n and the columns represent the assignments
of the random vector r. Since in p(n) steps at most p(n) random bits can be
processed, we can restrict our attention to random vectors of length p(n). Po-
sition (x, r) of the matrix contains a 1 if M on input x with random vector r
is incorrect. Otherwise the matrix entry is 0. Since the probability of an error
is bounded by 2−(n+1), each row contains at most 2p(n)−(n+1) 1’s. The total
number of 1’s in the matrix is then bounded by 2p(n)−1 By the pigeonhole
principle at least half of the columns must contain only 0’s. We choose one of
the corresponding random vectors r∗n as help h(n) for a non-uniform Turing
machine M ′. The Turing machine M ′ simulates M using h(n) = r∗n where M
uses random bits. So M ′ is deterministic and makes no errors. Furthermore,
the runtime of M ′ is bounded by p(n). ��

For BPP algorithms with sufficiently small error-probability there is a
golden computation path that works for all inputs of the same length. This
computation path can be efficiently simulated – if it is known. The difficulty
of derandomizing BPP algorithms is the difficulty of finding this golden com-
putation path. Note that is not because there are so few of them: If the
error-probability of the BPP algorithm is reduced to 2−2n, then the fraction
of golden computation paths among all computation paths is at least 1−2−n.

14.6 Complexity Classes for Computation with Help

Before we ask whether NP algorithms can be simulated by circuits of polyno-
mial size, as BPP algorithms can be, we want to investigate more closely the
complexity classes that arise from non-uniform Turing machines. In polyno-
mial time only a polynomially long help can be read. So we will only allow
polynomially long help. Furthermore, we will restrict ourselves to determin-
istic and nondeterministic polynomial-time computations. Generalizations of
both of these aspects are obvious.

Definition 14.6.1. The complexity class P/poly contains all decision prob-
lems that can be decided in polynomial time by non-uniform deterministic
Turing machines with polynomially long help. NP/poly is defined analogously
using nondeterministic Turing machines.

14.6 Complexity Classes for Computation with Help 213

The following characterization of P/poly follows from earlier results.

Corollary 14.6.2. P/poly contains exactly those decision problems A for
which fA = (fA

n) has polynomially bounded circuit size.

Proof. Theorem 14.3.1 says that the existence of polynomial-size circuits for
fA = (fA

n) implies that A ∈ P/poly. Theorem 14.2.1 and the remarks at the
beginning of Section 14.3 provide the other direction of the claim. ��

Now we can also present Theorem 14.5.1 in its customary brief form:

Corollary 14.6.3. BPP ⊆ P/poly. ��

The NP
?
= P-question has a non-uniform analogue, namely the NP/poly

?
=

P/poly-question. In order to get a better feeling for the class NP/poly we will
present a characterization in terms of circuits for this class as well. Since
NP expresses the use of an existential quantifier over a polynomially long
bit vector, we must give our circuits the possibility of realizing existential
quantifiers.

Definition 14.6.4. A nondeterministic circuit C is a circuit for which the
inputs are partitioned into input variables x and nondeterministic variables
y. Each gate G in such a circuit computes the function fG : {0, 1}|x| → {0, 1}
defined such that fG(a) = 1 if and only if there is a b ∈ {0, 1}|y| such that
gate G computes the value 1 when the values of the x-variables are given by
a and the values of the y-variables are given by b.

Theorem 14.6.5. NP/poly contains exactly those decision problems A for
which the Boolean functions fA = (fA

n) have nondeterministic circuits of
polynomial size.

Proof. First suppose that A ∈ NP/poly. We can assume that we have a non-
uniform nondeterministic Turing machine M for A that on inputs of length n
takes exactly p(n) steps for some polynomial p. The circuit Cn that simulates
M on inputs of length n contains, in addition to the n input variables, constant
inputs representing the help for M for inputs of length n, and nondeterministic
input variables that describe the nondeterministic choices of M . With respect
to this longer input, M works deterministically and can be simulated by a
polynomial-size circuit. Considered as a nondeterministic circuit, with the
appropriate partitioning of the inputs, this circuit computes the function fA

n .
Now suppose we have nondeterministic circuits C = (Cn) for fA = (fA

n).
The non-uniform Turing machine M receives as help for inputs of length n
a description of the circuit Cn. M then randomly generates values for the
nondeterministic inputs and simulates Cn on the extended input vector. Thus
M decides A in polynomial time. ��

214 14 The Complexity of Non-uniform Problems

14.7 Are There Polynomial Circuits for all Problems in

NP?

Since BPP ⊆ P/poly, one can ask if it is also (or even) the case that
NP ⊆ P/poly. This would not lead directly to efficient algorithms for NP-
equivalent problems, but we would at least have a better idea about what
makes them difficult. Since polynomial reductions can be simulated by cir-
cuits of polynomial size, either all NP-complete problems are in P/poly, or
P/poly contains no NP-complete problems. Since P ⊆ P/poly, we can’t hope to
prove that NP �⊆ P/poly. On the other hand, we believe that NP is so much
farther from P than BPP is that NP can’t be a subset of P/poly. We already
know the way out of this situation. We will show that one of our well-founded
complexity theoretic hypotheses is false if NP ⊆ P/poly. In this case it is the
hypothesis Σ2 �= Σ3. Expressed differently, NP can only be a subset of P/poly

if the polynomial hierarchy collapses to the second level, namely to Σ2.
For the proof of this claim it suffices to show for some problem A ∈ NP

that
A ∈ P/poly⇒Σ2 = Σ3 .

The obvious choice for A is some NP-complete problem. The inputs of A have
to be coded in binary, but this doesn’t affect the complexity with respect
to the usual descriptions of the problems we have considered. So what NP-
complete problem should we choose? Based on our experience, the standard
choice would be Sat or 3-Sat. This choice works here as well. But we will see
in our proof that it is only important to choose an NP-complete problem with
the following property:

Definition 14.7.1. A decision problem is called polynomially self-reducible
if it is Turing reducible to itself in such a way that all the queries made by the
reduction are to instances of shorter length than the instance to be decided.

Later we will see how this property gets used. First we show two examples
of NP-complete problems that are polynomially self-reducible.

Lemma 14.7.2. Sat and Clique are polynomially self-reducible.

Proof. For Sat we can decide instances with no variables directly in polyno-
mial time. Otherwise we choose a variable x that occurs in our Sat instance
ϕ, form instances ϕ0 = ϕ|x=0 and ϕ1 = ϕ|x=1, and query the subprogram for
Sat on these two shorter instances. The formula ϕ is satisfiable if and only if
at least one of ϕ0 and ϕ1 is satisfiable.

For Clique we can decide instances with n = 1 or k = 1 directly in
polynomial time. So let (G, k) be an instance of Clique with n, k ≥ 2. We
select a vertex v from G with minimal degree. If the degree of this vertex
is n − 1, then we have a complete graph and can again decide about the
instance (G, k) directly. Otherwise we construct two graphs: G1 is the result
of removing v from G, and G2 is the subgraph of G containing only those

14.7 Are There Polynomial Circuits for all Problems in NP? 215

vertices connected to v by an edge. By our choice of v, both G1 and G2 have
a shorter description than G. We query Clique about (G1, k) and (G2, k−1),
and we accept only if at least one of these queries is accepted by Clique. This
decision is correct since G has a clique of size k if and only if there is a clique
of size k that doesn’t use vertex v or a clique of this size that contains v. But
the second case is equivalent to the existence of a clique of size k − 1 among
the neighbors of v. ��

For a polynomially self-reducible problem A we will let MA denote
a polynomial-time Turing machine that decides A with queries to an A-
subprogram for shorter instances of A. This same Turing machine can also be
used with an oracle for a different decision problem B. In this case we will
let L(MA, B) denote the language accepted by MA with oracle B. Finally, for
C ⊆ {0, 1}∗ we let C≤n denote the set of all x ∈ C with |x| ≤ n. Now we are
ready to prove a technical lemma that allows us to draw consequences from
the self-reducibility of A.

Lemma 14.7.3. For a polynomially self-reducible decision problem A and a
language B ⊆ {0, 1}∗ if L(MA, B)≤n = B≤n, then A≤n = B≤n.

Proof. We prove the lemma by induction on n. For n = 0 the only allowed
input is the empty string. Since there are no shorter strings, the subprogram
for MA cannot be called, and so A≤0 = L(MA, A)≤0 = L(MA, B)≤0 = B≤0.

Now suppose that L(MA, B)≤n+1 = B≤n+1. Then L(MA, B)≤n = B≤n, so
by the inductive hypothesis A≤n = B≤n. We must show that A≤n+1 = B≤n+1.
For a string of length n + 1 the Turing machine queries the subprogram only
about strings y with |y| ≤ n. So it doesn’t matter if the subprogram is deciding
A, A≤n, B≤n, or B since these are all the same on strings of length up to n.
It follows that

A≤n+1 = L(MA, A)≤n+1 = L(MA, B)≤n+1 = B≤n+1 ,

with the last equality following from our assumption. This proves the lemma.
��

In what follows let A be a polynomially self-reducible NP-complete set like
the ones we encountered in Lemma 14.7.2. Once again let MA be a polynomial-
time Turing machine that decides A with the help of queries to shorter in-
stances of A. Our goal is to show that if A ∈ P/poly, that is, if there exist
polynomial-size circuits C = (Cn) for fA = (fA

n), then Σ2 = Σ3. It is impor-
tant that instances of A be coded in binary. Circuits only work on inputs of
a fixed length. For our purposes, it would be nice to have circuits that could
process all instances of length up to m. So we will consider a circuit with
input length m+�log m�, such that the first �log m� input bits code a number
i ∈ {1, . . . , m} and the original circuit Ci is then simulated on the next i
input bits. It is easy to construct such a family of circuits C∗ = (C∗

m) from

216 14 The Complexity of Non-uniform Problems

the family C = (Cn) in polynomial time and in such a way that the new cir-
cuits also have polynomial size. Now if a subprogram is called that simulates
circuit Ci for an arbitrary i ≤ m, then we can replace this subprogram with a
program that simulates C∗

m instead. Within the subprogram we first compute
a suitable input for C∗

m. From this it follows that L(MA, C∗
m)≤m = A≤m.

Said differently: For instances x of length i, x ∈ L(MA, C∗
m) if and only if

Ci(x) = 1. Based on this preliminary discussion we will now show how from
the assumption that there are polynomial-size circuits for the NP-complete
problem A, it follows that languages in Σ3 are already contained in Σ2.

Theorem 14.7.4. If NP ⊆ P/poly, then Σ2 = Σ3.

Proof. Let A be a polynomially self-reducible NP-complete decision problem.
If NP ⊆ P/poly, then there is a circuit family C = (Cn) for A of polynomial
size that computes fA = (fA

n). We will also make use of the polynomial-size
circuits C∗

m as described above.
Now let L ∈ Σ3. By Theorem 10.4.3 there is an ∃∀∃-representation for L

with a polynomial-time predicate. We can turn this into an ∃∀-representation
with an NP predicate. Since A is NP-complete, we can reduce the NP predicate
to A with a polynomial reduction f . Thus for some polynomial p we have

L = {x : ∃y |y| ≤ p(|x|) ∀z |z| ≤ p(|x|) : f(x, y, z) ∈ A} .

The length of f(x, y, z) is bounded by q(|x|) for some polynomial q. We claim
that L can be characterized in the following way, where p′ is a suitable poly-
nomial.

L = {x : ∃(C, y) with |C| ≤ p′(|x|) and |y| ≤ p(|x|)

∀(w, z) with |w| ≤ q(|x|) and |z| ≤ p(|x|)

C describes a circuit with size polynomial in |x|

for inputs of length at most q(|x|),

w ∈ L(MA, C) ⇔ C|w|(w) = 1, and

C computes the value 1 for f(x, y, z)} .

In order for this to be a Σ2 characterization, the three properties must be
checkable in polynomial time. For the first property this is clearly true for the
usual description of circuits. For the second property this follows since MA is
polynomially time-bounded, we can replace subprogram calls with simulations
of C, and the evaluation of circuits can be done in polynomial time. Since f
can be computed in polynomial time, we can also check the third property in
polynomial time.

Finally, we show that this characterization of L is correct. First let x ∈ L.
For our circuit C we choose a circuit of polynomial size that checks for (b, a) ∈
{0, 1}�log q(|x|)�×{0, 1}q(|x|) whether the prefix of a of length bin(b) belongs to
A. Here we are using bin(b) to represent the number from {1, . . . , q(|x|)} that
is represented by b. We consider C as a circuit for inputs a with |a| ≤ q(|x|)

14.7 Are There Polynomial Circuits for all Problems in NP? 217

that checks for membership in A. The correctness of the second condition
follows from our preliminary discussion. By Lemma 14.7.3, C accepts exactly
those instances that belong to A, and thus C accepts f(x, y, z).

For the other direction we assume that x satisfies the logical character-
ization given above. By Lemma 14.7.3 the second condition implies that C
accepts inputs (b, a) ∈ {0, 1}�log q(|x|)�+q(|x|) if and only if the prefix of a spec-
ified by b belongs to A. From the third condition it follows that f(x, y, z) ∈ A.
So x ∈ L now follows from the previous characterization of L. This proves the
theorem. ��

The results in Corollary 14.6.3 and Theorem 14.7.4 can be interpreted
as saying that NP presumably contains problems that are more difficult (with
respect to circuit size) than the problems in BPP. In particular, NP is probably
not contained in BPP.

15

Communication Complexity

15.1 The Communication Game

The goal of complexity theory is to estimate the minimal resources needed to
solve algorithmic problems. The lower bounds we have proven so far depend
on complexity theoretic hypotheses or are with respect to specialized scenarios
like the black box scenario. In this chapter and the next we will prove lower
bounds for one resource without complexity theoretic assumptions but under
the condition that some other resource is sufficiently restricted, i.e., so-called
trade-off results. Among these will be results in Chapter 16 giving size lower
bounds for bounded-depth circuits and or for bounded-length branching pro-
grams. Probably the earliest results of this type were about the area A and
the parallel computation time T of VLSI circuits (see also Section 15.5). For
certain functions f = (fn), Thompson (1979) showed that the product of area
and the square of the runtime must grow asymptotically at least as fast as n2,
expressed formally: AT 2 = Ω(n2). This means that area and runtime cannot
both be small. Yao (1979) filtered out the core of the ideas used in the proof
of these bounds and separated it from the specific applications. Out of this
came the theory of communication complexity, which is based on the following
communication game.

Alice and Bob cooperate to evaluate a function f : A × B → C based on
distributed information about the input. They need to compute f(a, b) for
a ∈ A and b ∈ B. Alice knows a but not b, and Bob knows b but not a. How
the input is distributed among Alice and Bob is part of the question. The
goal is to come to a point where both Bob and Alice know that both of them
know the value of f(a, b). Communication complexity only deals with the case
that A, B, and C are finite. In most of our examples we will be investigating
Boolean functions with a single output, that is, the case where A = {0, 1}m,
B = {0, 1}n, and C = {0, 1}.

The communication game places an emphasis on the information ex-
changed between Alice and Bob. The goal is to minimize the worst-case (with
respect to the various inputs (a, b)) number of bits that Alice and Bob ex-

220 15 Communication Complexity

change. To make this precise we must explain the rules of the game. With
knowledge of the function f but without knowledge of the particular input
(a, b), Alice and Bob agree upon a communication protocol P .

Definition 15.1.1. A communication protocol consists of a protocol tree TP

to evaluate f . The protocol tree is a binary tree in which each inner vertex has
a 0-child and a 1-child. The leaves of the tree are labeled with values c ∈ C.
Each inner vertex v is assigned to either Alice or Bob, and we will refer to
them as A-vertices and B-vertices. For every vertex v there are sets Av ⊆ A
and Bv ⊆ B with the interpretation that only inputs (a, b) ∈ Av × Bv can
reach this vertex. Since the protocol will begin at the root of the tree for any
instance (a, b), Av = A and Bv = B for the root v. In addition, for each
A-vertex v there is a decision function gv : Av → {0, 1}, and for any internal
vertex A-vertex v with children v0 and v1, Avi

= g−1
v (i) ⊆ Av. The situation

is analogous for the B-vertices.

Alice and Bob compute f(a, b) by traversing a path in the protocol tree
in the following way. They begin at the root, which is thus reachable for all
inputs. If at some point in the protocol, they are at an A-vertex v, then Alice
computes gv(a), sends gv(a) to Bob, and they proceed to the gv(a)-child of
v. For the protocol to be suitable for the evaluation of f , it must be the case
that the leaf eventually reached for the input (a, b) is correctly labeled with
f(a, b).

If Alice and Bob use protocol P , then they exchange exactly as many bits
for input (a, b) as there are edges on the path from the root of TP to the
leaf l(a, b). The depth dP (a, b) of the leaf l(a, b) in TP describes the amount
of communication required for input (a, b). The length of the protocol P is
defined to be the maximum of all dP (a, b) and is denoted l(P). Finally, the
communication complexity C(f) of f is the minimal length of a protocol for
evaluating f .

Since we are not concerned with the resources required to agree on a
protocol, communication complexity is a non-uniform complexity measure.
Furthermore, several aspects of the description and evaluation of the decision
functions gv at the inner vertices are abstracted. So a short protocol does not
necessarily lead to an efficient general solution to the problem being consid-
ered. On the other hand, large lower bounds on communication complexity
have the consequence that the problem is not efficiently solvable. We are there-
fore mostly interested in lower bounds and use upper bounds only to check
how good the lower bounds are.

An example will help to clarify the definitions. Throughout this chapter
we will use 〈a〉 to denote the integer represented by a binary string (or bit)
a using the usual binary representation. For example 〈011〉 = 3. The Boolean
function f(a0, . . . , a3, b0, . . . , b3, s0, s1) should have the value 1 if and only if
a〈s〉 = b〈s〉 for 〈s〉 = 〈s0〉 + 2〈s1〉. We first give an informal description of a
protocol for evaluating f if Alice knows a0, . . . , a3, and s0 and Bob knows
b0, . . . , b3, and s1:

15.1 The Communication Game 221

• Alice sends s0.
• Bob sends s1.
• Bob computes 〈s〉 and sends b〈s〉.
• Alice computes 〈s〉 and sends 1 if and only if a〈s〉 = b〈s〉.

The protocol tree for this example is illustrated in Figure 15.1.1, where the
vertices are labeled to show who sends a bit and how it is computed. This
protocol has length 4. The number of so-called communication rounds is 3
since along each path in the protocol tree the roles of sender and receiver are
exchanged only twice.

B, b0

A, a3A, ā3A, a1A, ā1A, a2A, ā2A, a0A, ā0

B, b3B, b1B, b2

B, s1B, s1

0

0 0 0 0

0 1

11

1

11

0 1
A, s0

Fig. 15.1.1. A protocol tree. The last level has been omitted for the sake of clarity.
The 1-edges lead to 1-leaves and the 0-edges lead to 0-leaves.

If instead Alice knows a0, a1, b0, b1, and s0, and Bob knows a2, a3, b2, b3,
and s1, then the following protocol of length 3 can also be used:

• Alice sends s0.
• Bob sends s1.
• Alice and Bob compute 〈s〉. If 〈s〉 ≤ 1, then Alice can decide whether

a〈s〉 = b〈s〉 and send the result to Bob. Otherwise, Bob can decide if a〈s〉 =
b〈s〉 and send the result to Alice.

Before we discuss possible applications of the theory of communication
complexity, we want to show by means of an example that it is not at all easy to
design good protocols. Consider the following function fn : {0, 1}n×{0, 1}n →
{1, . . . , n}. Alice interprets her input a as the characteristic vector of a set
SA ⊆ {1, . . . , n}. That is, the set SA contains i if and only if ai = 1. Bob
interprets b analogously as a set SB . Together, Alice and Bob need to compute
fn(a, b), the median of the multi-set SA ∪ SB . If SA and SB together have s
elements, then fn(a, b) is the element in position �s/2� of the sorted sequence
of SA∪SB . We will show that the communication complexity of fn is Θ(log n).
In this case the lower bound �log n� is easy to show. Since it is possible that
SA = {i} and SB = ∅, each protocol tree must have a leaf labeled i. The lower

222 15 Communication Complexity

bound now follows because binary trees with at least n leaves must have depth
at least �log n�.

It is also quite easy to design a protocol of length O(log2 n). In this protocol
Alice and Bob perform a binary search on {1, . . . , n} to locate the median
M . The upper bound of O(log2 n) will follow if we can find a protocol of
length O(log n) with which Alice and Bob can decide whether M ≤ m for any
m ∈ {0, . . . , n}. For this, Alice sends the number of elements in SA and the
number of elements in {i ∈ SA | i ≤ m}. Now Bob can calculate the number
of elements in SA ∪ SB (recall that we are considering all sets as multi-sets)
and the number of elements in {i ∈ SA ∪ SB | i ≤ m}. This means he knows
the answer to the question, which he can then send to Alice.

Designing a protocol with length O(log n) is more complicated. In a
preparatory step, Alice and Bob exchange the values |SA| and |SB |. This
requires at most 2�log(n + 1)� bits. Now let k be the smallest power of 2
for which k ≥ |SA| and k ≥ |SB |. Clearly k < 2n. Now Alice and Bob will
add elements to the multi-sets SA and SB according to a prescribed scheme
in such a way that in the end |SA| = |SB | = k but the median of SA ∪ SB

remains unchanged. Each number added will be either 1 or n. If the number
of elements in |SA| + |SB | is even, then an equal number of 1’s and n’s are
used. Otherwise one more n is used than 1.

Alice and Bob know the value of k. Furthermore, they can maintain an
interval of integers that are possible values for the median. Since we want the
size of this interval I to be a power of 2, they begin with I = {1, . . . , 2�log n�}.
We will show the claim by giving a protocol of length 2 that will halve either
k or |I|. After at most �log n� + log k − 1 = O(log n) of these steps, either
|I| = 1 or k = 1. If |I| = 1, then Alice and Bob know the only element in I
which is the median. If k = 1, then Alice and Bob exchange the only elements
in SA and SB ; the median is the smaller of the two.

Now we must describe the promised protocol of length 2. Alice computes
the median a′ of her current multi-set SA, and Bob computes b′ from SB

analogously. Let i be the smallest element in I. Alice considers the binary
representation of a′ − i, which has length �log |I|�, and sends the most signif-
icant bit a∗ to Bob. Bob does the analogous thing and sends b∗ to Alice. If
a∗ = b∗, then for the overall median M it must be that the binary represen-
tation of M − i begins with a∗. This suffices to halve the interval I: If a∗ = 0,
then I is replaced by its first half; otherwise I is replaced by its second half.
Now consider the case that a∗ �= b∗. For reasons of symmetry it suffices to
consider the case a∗ = 0 and b∗ = 1. Then Alice can remove the smaller half
of the elements from SA and Bob can remove the larger half of the elements
from SB . This cuts k in half but does not change the median. So the median
problem has communication complexity Θ(log n).

This example also shows that protocol trees are well-suited for structural
considerations, but that it is better to describe specific protocols algorithmi-
cally.

15.2 Lower Bounds for Communication Complexity 223

In which areas can we find applications for the communication game? In
networks or multiprocessor systems with distributed information, the commu-
nication complexity describes the least resources required to solve a problem.
In this case we would need a communication game with many players. But
often it is sufficient to consider the case where the players are divided into two
groups, which are then represented by Alice and Bob. Since these examples
are straightforward, we won’t go into any more detail here.

In the example of VLSI circuits mentioned above, chips are rectangular
regions with prescribed positions where the input bits are provided. Chips
with area A can always be separated along a cut of length at most A1/2 + 1
so that approximately half of the inputs lie on each side of the cut. The two
halves must “communicate” so that the chip can do its task. This idea will
motivate our discussion in Section 15.5.

If we consider Turing machines with only one tape and divide the input
in half, then enough information must flow across this dividing mark for the
Turing machine to perform its task. In Section 15.5 we will use communication
complexity to show that there are problems that require Ω(n2) time on a one-
tape Turing machine but only linear time on a two-tape Turing machine.

In Chapter 16 we will show that for functions with certain properties, cir-
cuits with severely limited depth and gates of unbounded fan-in must have
many edges since each edge can contribute only a little to the communication
that is needed. Branching programs with restrictions that we will describe
later can be partitioned into layers in such a way that small branching pro-
grams lead to an efficient communication protocol for the represented function
and a suitable partition of the input. So if the communication complexity of
a function is large, the branching program must be large as well.

Before we get to these applications, we must show how we can prove lower
bounds for communication complexity. In Section 15.2 we investigate the de-
terministic communication game described above. In Section 15.3 we inves-
tigate the case of one-sided but unbounded error, that is, non-deterministic
protocols. And in Section 15.4 we investigate one- and two-sided errors that
may only occur with small probability.

The communication game between Alice and Bob is an abstraction of
many interesting problems. Questions are reduced to the core of the
information exchanged between two modules involved in the solution.
So in many models, lower bounds for communication complexity of
specific functions have consequences for the complexity of the problem
being considered.

15.2 Lower Bounds for Communication Complexity

The example of computing the median made it clear that we cannot argue
naively to determine the communication complexity of a function. Even in our

224 15 Communication Complexity

earlier example of a function f with ten input bits and two different partitions
of the input, we only suspect that the given protocols of lengths 4 and 3 are
optimal. The key to proofs of lower bounds lies in the investigation of protocol
trees and the recognition that the set Iv = Av × Bv ⊆ A × B of all inputs
that reach the vertex v has very special properties. The sets Iv for leaves v of
a protocol tree, for example, form a partition of A × B since for each input
the protocol defines a path ending at a leaf.

In a protocol tree for f with a leaf v marked with c it follows that f must be
a constant function (with value c) on the set Av×Bv. So sets of the form A′×B′

will play a special role and therefore should receive a special name. With this
motivation we define the communication matrix of the function f : A×B → C.
This matrix has |A| rows representing the partial assignments a ∈ A, and |B|
columns representing the partial inputs b ∈ B. Position (a, b) of the matrix
contains the value f(a, b). So the communication matrix is just another form
of the function table, one that reflects the partitioning of the input among
Alice and Bob. Figures 15.2.1 and 15.2.2 show the communication matrices
for n = 3 and the functions GT (greater than) and EQ (equality test). If 〈a〉
denotes the value of a interpreted as a number in binary, then GTn(a, b) = 1
if and only if 〈a〉 > 〈b〉 and then EQn(a, b) = 1 if and only if 〈a〉 = 〈b〉.

000 001 010 011 100 101 110 111

000

001

010

011

100

101

111

110

0 0

0

0

0

0

0

0

0 0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

0

0

0

0

0

0

0

0

Fig. 15.2.1. The communication matrix of GT3.

In Figure 15.2.1 the set {001, 010, 011} × {011, 100, 101, 110, 111} is in-
dicated by the dashed outline. This set forms a submatrix or a geomet-
ric rectangle. On the other hand, in Figure 15.2.2 the indicated set is
{000, 001, 100, 101} × {010, 011, 110, 111}, which is geometrically a union of
rectangles. We will refer to such sets as combinatoric rectangles since the row
and column orderings in the communication matrix are arbitrary, and with a
suitable reordering of the rows and columns any combinatoric rectangle be-

15.2 Lower Bounds for Communication Complexity 225

000 001 010 011 100 101 110 111

000

001

010

011

100

101

111

110

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0 0

1

0

0

0

00

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Fig. 15.2.2. The communication matrix of EQ3.

comes a geometric rectangle. Abbreviating, we will refer to A′ × B′ for any
A′ ⊆ A and B′ ⊆ B simply as a rectangle of the communication matrix. Such
a rectangle is called monochromatic if all f(a, b) with (a, b) ∈ A′ × B′ have
the same value. As we did for the graph coloring problem, we will identify
colors and numbers. If we are interested in the function value c we will refer
to c-rectangles.

We summarize this discussion as follows: A protocol of length l leads to a
protocol tree with at most 2l leaves. Therefore the input set can be partitioned
into at most 2l monochromatic rectangles. This can be reformulated into the
following theorem making use of the fact that C(f) is an integer.

Theorem 15.2.1. Let f : A×B → C be given. If every partition of A×B into
monochromatic rectangles requires at least r rectangles, then the communica-
tion complexity of f cannot be smaller than �log r�, that is, C(f) ≥ �log r�.

��

Let’s see how we can apply this theorem. We define the size of the rectangle
A′ × B′ to be |A′| · |B′|. If gc is the size of the largest c-rectangle, then we
will need at least rc := �|f−1(c)|/gc� c-rectangles. If the sum of all rc with
c ∈ C is denoted r, then Theorem 15.2.1 provides a lower bound of �log r� for
C(f). This method is sufficient to produce a lower bound for EQn. We have
|EQ−1

n (1)| = 2n, since for a ∈ {0, 1}n exactly the pairs (a, a) are mapped to
1. On the other hand, no rectangle A′ × B′ with |A′| ≥ 2 or |B′| ≥ 2 can
contain only pairs of the form (a, a). So r1 = 2n. Also r0 ≥ 1 and r ≥ 2n + 1,
so C(EQn) ≥ �log(2n +1)� = n+1. It is also easy to see that C(EQn) ≤ n+1,
since Alice can send her input of length n to Bob, and then he can compute
the result and send it back to Alice.

Theorem 15.2.2. C(EQn) = n + 1. ��

226 15 Communication Complexity

For the function GT this argument is not sufficient. Figure 15.2.1 shows
that a single 0-rectangle or 1-rectangle can cover one quarter of all the inputs.
This gives a lower bound of 3. On the other hand, we really don’t believe
that GT is easier than EQ. By simply counting the inputs, we have been
implicitly viewing all inputs as equal. But if a function has “easy subregions”,
then our counting argument breaks down. But we can generalize our method
of “counting” using a probability distribution p on A×B. We will define the
p-size of A′ × B′ to be p(A′ × B′).

Theorem 15.2.3. Let p be a probability distribution on A × B. If for each
monochromatic rectangle R, the condition p(R) ≤ ε is satisfied, then C(f) ≥
�log(1/ε)�.

Proof. Since p(A × B) = 1, every partition of A × B into monochromatic
rectangles contains at least �1/ε� rectangles. The result now follows from
Theorem 15.2.1. ��

Now we can apply this method to GT. Intuitively, GTn(a, b) is easy to com-
pute if 〈a〉 and 〈b〉 are very different. Let D = {(a, b) ∈ {0, 1}n×{0, 1}n : 〈a〉 =
〈b〉 or 〈a〉 = 〈b〉+1}. We define a probability distribution p on {0, 1}n×{0, 1}n

so that p(a, b) = 1/(2 · 2n − 1) for all (a, b) ∈ D and 0 otherwise. That is, p
gives a uniform distribution on strings in D. In the communication matrix,
these are the values on the main diagonal and just below the main diagonal.
Any 0-rectangle R consists of exactly one diagonal entry, since if R contained
both (a, a) and (b, b) with a �= b, then it would also contain (a, b) and (b, a),
but either GTn(a, b) = 1 or GTn(b, a) = 1. Thus for any 0-rectangle R,
p(R) ≤ 1/(2 · 2n − 1). On the other hand, if a 1-rectangle R contained (a, b)
and (a′, b′) with 〈a〉 = 〈b〉 + 1, 〈a′〉 = 〈b′〉 + 1, and 〈a〉 < 〈a′〉, then R would
also contain (a, b′). But 〈a〉 ≤ 〈a′〉 − 1 = 〈b′〉, so GTn(a, b′) = 0. This shows
that p(R) ≤ 1/(2 · 2n − 1) for all 1-rectangles R as well. By Theorem 15.2.3
we have

Theorem 15.2.4. C(GTn) = n + 1. ��

If we look more closely at our proof of the lower bound for GTn, we
see that we considered the 0-rectangles and the 1-rectangles separately. We
showed that each 0-rectangle can contain at most one input (a, b) with positive
probability and that the same holds for 1-rectangles. When we can apply
Theorem 15.2.3 in such a way, it is possible to give a simpler argument.

Definition 15.2.5. For f : A × B → C and c ∈ C a subset S ⊆ A × B is
called a c-fooling set if f(a, b) = c for all (a, b) ∈ S but if (a, b) ∈ S and
(a′, b′) ∈ S with (a, b) �= (a′, b′), then at least one of f(a, b′) and f(a′, b) is
different from c.

The idea is that the inputs in S confuse Alice and Bob if they use a short
protocol.

15.2 Lower Bounds for Communication Complexity 227

Theorem 15.2.6. If there is a c-fooling set of size sc for f : A×B → C and
c ∈ C, then

C(f) ≥ �log
∑
c∈C

sc� .

Proof. It suffices to show that every partition of A × B into monochromatic
rectangles requires at least sc c-rectangles. Definition 15.2.5 guarantees that
a c-rectangle cannot contain two elements from a c-fooling set. This proves
the theorem. ��

For the function GTn, the pairs (a, a) form a 0-fooling set of size 2n and
the pairs (a, b) with 〈a〉 = 〈b〉 + 1 form a 1-fooling set of size 2n − 1. Thus

C(GTn) ≥ �log(2n + 2n − 1)� = n + 1 .

We want to consider two additional functions that will play a role later.
The function DIS = (DISn) (disjointness test) interprets its inputs a, b ∈
{0, 1}n as characteristic vectors of sets A, B ⊆ {0, . . . , n} and tests whether
A ∩ B = ∅. In other words,

DISn(a, b) = ¬(a1b1 + · · · + anbn) ,

where ¬ stands for NOT and + for OR. The function IP = (IPn) (inner
product or scalar product) is defined by

IPn(a, b) = a1b1 ⊕ · · · ⊕ anbn ,

where ⊕ stands for EXOR. That is, IP computes the scalar product over Z2.
The function IP should not be confused with the complexity class IP that was
introduced in Chapter 11.

Theorem 15.2.7. C(DISn) = n + 1 and n ≤ C(IPn) ≤ n + 1.

Proof. As in the case of EQn, the upper bounds are obtained by having Alice
send her entire input to Bob, who then calculates the result and sends it back
to Alice.

For DISn the pairs (a, a), where a denotes the bitwise complement of a,
form a 1-fooling set of size 2n. So we need at least 2n 1-leaves and at least
one 0-leaf. The lower bound follows.

For IPn we go back to the counting method of Theorem 15.2.1. | IP−1
n (0)| >

22n/2, since for a = 0n the function IPn takes on the value 0 for all (a, b),
and for a �= 0n this is the case for exactly half of the b’s. We have made use
of this last property in several contexts already. Now let a with ai = 1 and
b1, . . . , bi−1, bi+1, . . . , bn be fixed. Then exactly one of the two values for bi

leads to an IP-value of 0. If we can show that every 0-rectangle R has at most
2n inputs (a, b), then we will know that we need more than 2n/2 0-rectangles
to cover all the 0-inputs.

228 15 Communication Complexity

To estimate the size of a 0-rectangle R, we use the algebraic character of
the scalar product. For a set A ⊆ {0, 1}n let 〈A〉 be the subspace spanned by
A in the Z2-vector space Zn

2 . For each 0-rectangle R = A × B, 〈A〉 × 〈B〉 is
also a 0-rectangle. This follows from the following relationship, which is easy
to verify:

IPn(a ⊕ a′, b ⊕ b′) = IPn(a, b) ⊕ IPn(a, b′) ⊕ IPn(a′, b) ⊕ IPn(a′, b′) ,

where ⊕ represents bitwise EXOR on the left side. So the largest 0-rectangle
has the form A × B where A and B are orthogonal subspaces of Zn

2 . The
dimension of Zn

2 is n, and from the orthogonality of A and B it follows that
dim(A) + dim(B) ≤ n. Finally, the size of R is |A| · |B|, and

|A| · |B| = 2dim(A) · 2dim(B) ≤ 2n . ��

The representation of the function f as a communication matrix Mf sug-
gests applying methods from linear algebra to this matrix. This leads to the
rank lower bound method for approximating the communication complexity
of f .

Theorem 15.2.8. Let rank(f) be the rank of the communication matrix Mf

over R, for an f with an image space {0, 1}. Then

C(f) ≥ �log rank(f)� .

Proof. We will show that every communication protocol for f requires a pro-
tocol tree T with at least rank(f) many 1-leaves. The theorem follows from
this directly.

Let Av ×Bv be the set of inputs that reach the 1-leaf v in T . We form the
matrix Mv that has a 1 in position (a, b) if and only if (a, b) ∈ Av × Bv. For
each a ∈ Av, Mv contains a row that is identical to the characteristic vector
for Bv, and for each a /∈ Av, a row of 0’s. So rank(Mv) = 1 if Av × Bv �= ∅,
and rank(Mv) = 0 otherwise. Furthermore, Mf is the sum of all Mv for the
1-leaves v. This follows because each input (a, b) ∈ f−1(1) leads to exactly one
1-entry in one of the matrices Mv. By the subadditivity of the rank function,
letting L(T) denote the set of 1-leaves in T , this leads to

rank(Mf) ≤
∑

v∈L(T)

rank(Mv) ≤ |L(T)| .

So the protocol tree for f has at least rank(Mf) many 1-leaves. ��

The communication matrix for EQn is the identity matrix and has full
rank 2n. From this it follows that there are at least 2n 1-leaves. If we want to
consider the number of 0-leaves as well, we can consider the negated function
EQn. Let En be the 2n×2n-matrix consisting solely of 1’s. Then rank(En) = 1.
Since Mf = En−Mf , it follows by the subadditivity of the rank function that

15.2 Lower Bounds for Communication Complexity 229

rank(Mf) ≤ rank(Mf) + 1. From this we get a lower bound of 2n − 1 for the
number of 0-leaves and thus C(EQn) ≥ n + 1. The communication matrix
for GTn has rank 2n − 1 (see Figure 15.2.1), and the communication matrix
of GTn has rank 2n. So we can also derive C(GTn) = n + 1 using the rank
method. For IPn the communication matrix is only a little different from the
much-studied Hadamard matrix Hn. For our purposes it is sufficient to define
the Hadamard matrix with the help of the communication matrix for IPn –
namely, Hn := En − 2 ·MIPn

. Since Hn has full rank 2n, we can close the gap
in Theorem 15.2.7 and prove that C(IPn) = n + 1.

Nevertheless it can be tedious to go back to these methods for each new
function. For this reason we are interested in a reduction concept that is
tailored to the communication game.

Definition 15.2.9. Let f : A × B → C and g : A′ × B′ → C be given.
There is a rectangular reduction from f to g, denoted f ≤rect g, if there is
a pair (hA, hB) of transformations hA : A → A′ and hB : B → B′, such that
f(a, b) = g(hA(a), hB(b)) for all (a, b) ∈ A × B.

Since communication complexity abstracts away the costs of computation,
we needn’t place any requirements on the computational complexity of hA and
hB .

Lemma 15.2.10. If f ≤rect g, then C(f) ≤ C(g).

Proof. Alice can compute a′ := hA(a) herself, and Bob can compute b′ :=
hB(b). Their communication protocol consists of using an optimal protocol
for g on (a′, b′). By the definition of ≤rect this protocol is correct. ��

Up until now we have been satisfied to investigate communication com-
plexity with given partitions of the inputs between Alice and Bob. In many
applications (see Chapter 16) we need a stronger result: For every listing of
the variables there must be a dividing point so that if we partition the vari-
ables so that Alice gets the variables before the dividing point and Bob the
variables that come after, then the communication complexity of the function
is large. This is not true for the functions EQn, GTn, DISn, and IPn that we
have been considering. For the variable sequence a1, b1, a2, b2, . . . , an, bn the
communication complexity for every dividing point is bounded by 3. Using
the so-called mask technique we obtain from each of these four functions a
function that is difficult in the sense above. We define only the mask variant
EQ∗

n of EQn since GT∗
n, DIS∗

n, and IP∗
n are defined analogously. The func-

tion EQ∗
n is defined on 4n variables ai, a

′
i, bi, b

′
i, 1 ≤ i ≤ n. The mask vector

a′ shortens the vector a to a∗ by striking all ai for which a′
i = 0. In the

same way we get b∗ from b using the mask vector b′. If a∗ and b∗ have dif-
ferent lengths, then EQ∗

n(a, a′, b, b′) := 0. If a∗ and b∗ are of length m, then
EQ∗

n(a, a′, b, b′) := EQm(a∗, b∗).
Now consider an arbitrary sequence of 4n variables and place the dividing

point at the position where we have first seen �n/2� a-variables or �n/2� b-
variables. If we have seen �n/2� a-variables, then beyond the dividing point

230 15 Communication Complexity

there must be at least �n/2� b-variables and vice versa. The following result
shows that the mask variants of all the functions we have considered are
difficult.

Theorem 15.2.11. If Alice receives at least �n/2� a-variables and Bob at
least �n/2� b-variables, then

C(EQ ∗
n) ≥ C(EQ�n/2�) = �n/2� + 1 .

Analogous results hold for GT∗
n, DIS∗

n, and IP∗
n.

Proof. Alice and Bob must handle all inputs (a, a′, b, b′), in particular the case
that a′ selects exactly �n/2� of the a-variables given to Alice and b′ selects
exactly �n/2� b-variables given to Bob. Then what remains is the problem
EQ�n/2�, in which Alice has all the a-variables and Bob has all the b-variables.

��

Finally, we want to consider a structurally complicated function called
the middle bit of multiplication, denoted MUL = (MULn). The product of
two n bit integers has a bit length of 2n. The bit with place value 2n−1

(the bit in position n − 1) is called the middle bit of multiplication. It is
of particular interest that in many models of computation it is possible to
reduce the computation of the other bits of multiplication to the problem of
computing the middle bit. To make the representation easier, we will only
consider the case that n is even.

Theorem 15.2.12. If Alice and Bob each receive n/2 bits of the factor a
and the bits of the other factor b are divided arbitrarily among them, then
C(MULn) ≥ �n/8�.

Proof. The idea of the proof is to find a subfunction of MULn for which we
can use earlier results to give a lower bound of �n/8� for the communication
complexity. We will replace many of the variables with constants in such a
way that the resulting subfunction for the given partitioning of the variables
between Alice and Bob has a high communication complexity.

We begin by choosing a distance d ∈ {1, . . . , n − 1} such that the number
m of pairs (ai, ai+d) with the following properties is as large as possible.

• Alice and Bob each have exactly one of the bits ai and ai+d in their inputs,
and

• 0 ≤ i ≤ n/2 − 2 and n/2 ≤ i + d ≤ n − 1.

We will motivate this choice by means of an example, which also helps to
clarify the general case. For n = 16 and d = 7, suppose there are four pairs
with the desired properties, namely (a1, a8), (a3, a10), (a5, a12), and (a6, a13),
and that Alice knows a1, a6, a10, and a12 and Bob knows a3, a5, a8, and a13.
We want to reduce the computation of the middle bit to the computation of
the carry bit for addition where the summands are divided between Alice and

15.2 Lower Bounds for Communication Complexity 231

Bob in such a way that for each bit position Alice knows the value in exactly
one of the two summands (and Bob knows the other). If the second factor b
has exactly two 1’s – say in positions j and k – then the multiplication of 〈a〉
and 〈b〉 is just the addition of 〈a〉 · 2j and 〈a〉 · 2k. Now we want to choose j
and k so that

• the bit ai from 〈a〉 · 2j and the bit ai+d from 〈a〉 · 2k are in the same
position; that is, we want j − k = d; and

• the pair (i, i + d) with the largest i-value should end up in position n− 2.

So in our example we want j = 8 and k = 1 (see Figure 15.2.3).

0 a15 a14 a13

B

a12

A

a11 a10

A

a9 a8

B

a7 a6

A

a5

B

a4 a3

B

a2 a1

A

a0

a0a1

A

a2a3

B

a4a5

B

a6

A

a7a8

B

a9a10

A

a11a12

A

a14 a13a15

B

?

0

000 0 0 0 0 0

0 0 00 0 0

Fig. 15.2.3. The multiplication of 〈a〉 and 〈b〉 with two 1’s in positions 1 and 8.
The bits belonging to Alice and Bob are shown.

So that the middle bit of multiplication (its position is indicated by “?” in
Figure 15.2.3) will be the same as the carry bit from the sum of the numbers
formed from the selected pairs of numbers – in our example the numbers (a6,
a5, a3, a1) and (a13, a12, a10, a8) – we proceed as follows. The pairs that lie
between two selected pairs – in our example (a4, a11) and (a2, a9) – are set to
(0, 1). That way any carry from earlier positions will be passed on to the next
position. All other bits that were not designated in Figure 15.2.3 are set to 0
so that they do not affect the sum. The result is represented in Figure 15.2.4.

a100 0 0 0 0 0 0 0 0

?

1 1 a8 0 a6 a5 0 a3 0 a1 0 0

000000000a10a30a5a60a8110 0 a13

a12

a10a12

a13

Fig. 15.2.4. The summands after replacing some of the a-bits with constants.

The first j positions cannot generate carries, since there is at most one
1 in each of these positions. After this come a number of (0, 0) pairs which
generate no carries, until we reach the first (ai, ai+d) pair. The pairs between
the selected pairs pass along carries but generate no new carries. So the carry
from the sum of the numbers formed from the ai bits and the ai+d bits reaches

232 15 Communication Complexity

position n − 1. Since we have (0, 0) in that position, we obtain the problem
of determining the carry bit of the sum of two m-bit binary numbers where
Alice knows one of the bits in each of the m positions as a subproblem of
computing the middle bit of multiplication. Since for addition the two bits in
each position can be exchanged between the two summands without affecting
the sum, we obtain the problem CARm(u, v) of computing the carry bit of
the sum of an m-bit number u that Alice knows and an m-bit number v that
Bob knows.

The theorem now follows from the following two claims.

1. C(CARm) = m + 1.
2. It is possible to choose m ≥ �n/8� − 1.

To prove the first claim we consider the function GTm, which by The-
orem 15.2.4 has communication complexity m + 1. Since in general f and
f have the same communication complexity, C(GTm) = m + 1. Thus by
Lemma 15.2.10 Claim 1 follows if we can show that GTm ≤rect CARm. To
design the rectangular reduction we note that

GTm(a, b) = 1⇔〈a〉 ≤ 〈b〉

⇔ 2m − 〈a〉 + 〈b〉 ≥ 2m

⇔CARm(2m − a, b) = 1 .

So the following transformations form a rectangular reduction GTm ≤rect

CARm: Let hA(a) := a′ with 〈a′〉 = 2m − 〈a〉 and hB(b) := b.
The second claim follows with the help of the pigeonhole principle. Let

k be the number of ai with 0 ≤ i ≤ n/2 − 1, that Alice knows. Then Alice
knows n/2 − k of the aj , with n/2 ≤ j ≤ n − 1, and for Bob the situation
is exactly reversed. Thus of the n2/4 pairs (ai, aj) with 0 ≤ i ≤ n/2 − 1 and
n/2 ≤ j ≤ n−1, there are k2+(n/2−k)2 pairs from which Alice knows exactly
one bit. This number is minimized when k = n/4, and then it is n2/8. Now
by the pigeonhole principle at least �(n2/8)/(n − 1)� ≥ �n/8� of these pairs
(ai, aj) have the same index difference d = j − i. Since the case i = n/2− 1 is
forbidden, at least �n/8� − 1 pairs can be chosen with the desired properties.

��

The communication matrix plays a central role in proofs of lower
bounds for communication complexity. Protocol trees must have at
least as many leaves as the number of monochromatic rectangles re-
quired to partition the communication matrix. In addition to the inves-
tigation of the maximal size of monochromatic rectangles with respect
to an arbitrary probability distribution on the input set, fooling sets
and the rank method can also be used to prove lower bounds for com-
munication complexity.

15.3 Nondeterministic Communication Protocols 233

15.3 Nondeterministic Communication Protocols

In Chapter 3 we introduced nondeterministic computation as randomized
computation with one-sided error that need only be less than 1. We want
to define nondeterministic communication protocols in the same way.

For randomized communication, the protocol specifies how many random
bits Alice and Bob each have available. Alice’s random vector rA of length lA
is independent of Bob’s random vector rB of length lB . Alice knows rA, but
not rB , and Bob knows rB , but not rA. If the protocol calls for Alice to send
a bit to Bob at vertex v, then which bit she sends may depend not only on
the input a and the vertex v but also on rA. The analogous statement is true
for the bits Bob sends. So for any input (a, b) a random path is chosen in the
randomized protocol tree. The error-probability for a protocol tree for f and
the input (a, b) is the probability of reaching a leaf with a label that differs
from f(a, b).

If rA ∈ {0, 1}lA and rB ∈ {0, 1}lB are fixed, then we have a deterministic
protocol that depends on (rA, rB). So a randomized protocol consists of the
random choice of one of 2lA+lB deterministic protocol trees. It helps to image a
randomized balanced binary tree of depth lA+lB followed by the deterministic
protocol trees. Communication costs are caused by the deterministic protocol
trees but not by the randomized tree that sits above them.

If we want to investigate one-sided error, we have to restrict our attention
to decision problems, i.e., to functions f : A × B → {0, 1}. Nondeterminism
is defined as one-sided error for inputs from f−1(1) with an error-probability
that may be anything less than 1. In a protocol tree this means that for
(a, b) ∈ f−1(0) all paths of positive probability end at 0-leaves, while for
(a, b) ∈ f−1(1) there must be at least one path of positive probability that
ends at a 1-leaf. If we consider all paths of positive probability and the label-
ing of the leaves that are reached we obtain the function value as a disjunction
of these labels. Therefore we will speak of OR-nondeterminism in this case.
Co-nondeterminism for f can be defined as nondeterminism for f , or in terms
of AND-nondeterminism since we obtain the result of the function by taking
the conjunction of the labels of all leaves reached with positive probability. As
a new kind of nondeterminism we introduce EXOR-nondeterminism. A ran-
domized EXOR-protocol computes 1 exactly when an odd number of leaves
with label 1 can be reached with positive probability. This type of nondeter-
minism has practical significance as a data structure for BDDs (see Wegener
(2000)). Here we will investigate EXOR-nondeterminism as a representative
of extended concepts of nondeterminism. Of further interest are modq classes
(the number of paths to 1-leaves has a particular value modq), and majority
classes (the number of paths that reach the correct label is greater than 1/2,
which is the same as two-sided unbounded error).

Before we design nondeterministic protocols or prove lower bounds for
nondeterministic communication complexity, we want to give a combinato-
rial characterization of this complexity measure. Recall that we proved lower

234 15 Communication Complexity

bounds for deterministic communication complexity with the help of the min-
imal number N(f) of monochromatic rectangles that can partition the com-
munication matrix. We showed that �log N(f)� ≤ C(f). For deterministic
protocols it is necessary to work with partitions of the communication matrix
since each input reaches exactly one leaf in the protocol tree. For nondeter-
ministic protocols each input can reach many different leaves. But just as in
Definition 15.1.1, the inputs that reach a leaf v with positive probability still
form a rectangle. Now we define the combinatoric measures COR(f), CAND(f),
and CEXOR(f), with which we can characterize the nondeterministic commu-
nication complexity measures.

Definition 15.3.1. For f : A × B → {0, 1}, NOR(f) is the minimal num-
ber of 1-rectangles required to cover the 1-entries in the complexity matrix
of f . NAND(f) is defined analogously using 0-rectangles and 0-entries in the
communication matrix. Finally NEXOR(f) is the minimal number of rectan-
gles needed so that (a, b) is covered an odd number of times if and only if
f(a, b) = 1.

The following result shows that these covering measures characterize non-
deterministic communication complexity almost exactly.

Theorem 15.3.2. The following relationships hold:

• �log NOR(f)� ≤ COR(f) ≤ �log(NOR(f) + 1)� + 1,
• �log NAND(f)� ≤ CAND(f) ≤ �log(NAND(f) + 1)� + 1,
• �log NEXOR(f)� ≤ CEXOR(f) ≤ �log(NEXOR(f) + 1)� + 1.

Proof. The proof is analogous for all three claims. We will concentrate on the
OR-case, i.e., the case for the usual nondeterminism. For the upper bound,
Alice and Bob agree upon a minimal covering of the 1’s in the communication
matrix with 1-rectangles and on a numbering of the rectangles with numbers
in {1, . . . ,NOR(f)}. Alice investigates which of these rectangles intersect the
rows for her input a. If there are no such rectangles, then she sends 0 to Bob as
a binary number of length �log(NOR(f) + 1)�. In this case a 0-leaf is reached.
Otherwise, Alice nondeterministically selects the number i of one of the 1-
rectangles that intersect the a row and sends i to Bob. Bob can then decide
if the input (a, b) is in the selected rectangle. He then sends this information
to Alice. An accepting leaf is reached if and only if (a, b) is contained in the
selected 1-rectangle.

For the lower bound we consider the protocol tree, in which at each vertex
Alice or Bob decides, with the help of the information available to her or him,
which bit to send. For a protocol tree of length c = COR(f) this protocol tree
has at most 2c leaves and therefore at most 2c 1-leaves. The inputs for which
the vertex v is reached with positive probability again form a rectangle Rv.
All inputs from Rv for a 1-leaf v are accepted. So the collection of all Rv for
the 1-leaves v forms a cover of the 1’s in the communication matrix with at
most 2c 1-rectangles. Thus log NOR(f) ≤ COR(f) and the claim follows since
COR(f) is an integer. ��

15.3 Nondeterministic Communication Protocols 235

This result led Kushilevitz and Nisan (1997) to define COR(f) as log NOR(f)
and so as a purely combinatoric measure.

Which of our methods for the proof of lower bounds for deterministic
communication complexity can also be used in the nondeterministic case?
The methods in the deterministic case are

• estimation of the size of monochromatic rectangles, perhaps with respect
to some probability distribution,

• the construction of large fooling sets as a special case of the method above,
and

• the rank method.

If individual 1-rectangles can only cover an ε-portion of all 1’s, then not
only a partition but also a cover of the 1 entries requires at least �1/ε� many
rectangles. So the first two methods restricted to 1’s in the communication
matrix lead to lower bounds for the length of OR-nondeterministic protocols.
Of course the situation is analogous for the 0’s in the communication matrix
and AND-nondeterminism.

Theorem 15.3.3. Let p be a probability distribution on f−1(1) ⊆ A × B. If
for each 1-rectangle R the condition p(R) ≤ ε is satisfied, then COR(f) ≥
�log 1/ε�. If f has a 1-fooling set of size s, then COR(f) ≥ �log s�. Analogous
results hold for 0-rectangles, 0-fooling sets, and CAND(f). ��

These methods don’t provide any lower bounds for CEXOR(f) since the
rectangles belonging to the leaves of an EXOR-protocol tree need not be
monochromatic. On the other hand, the rank method does not help for OR-
and AND-nondeterminism, as the example of EQn shows. In the proof of
Theorem 15.2.8 the communication matrix was the sum of the matrices Mv

which represented the 1-rectangles corresponding to 1-leaves. This was be-
cause each 1-input reaches exactly one 1-leaf. This condition is no longer ful-
filled for nondeterministic protocols. But the situation is different for EXOR-
nondeterminism – provided we add the matrices over Z2. It is precisely the
1-inputs that reach an odd number of 1-leaves and therefore lead to an entry
of 1 in the Z2-sum of all the Mv. So the following theorem can be proved just
like Theorem 15.2.8.

Theorem 15.3.4. Let f be a Boolean function with image space {0, 1}, and
let rank2(f) be the rank of the communication matrix Mf over Z2. Then

CEXOR(f) ≥ �log rank2(f)� . ��

The following matrix shows that rank2(M) may be smaller than rank(M):

M =

⎡
⎢⎢⎢⎣

1 1 0

1 0 1

0 1 1

⎤
⎥⎥⎥⎦ .

236 15 Communication Complexity

Theorem 15.3.5. For nondeterministic communication complexity of the ex-
ample functions EQn, GTn, DISn, IPn, and MULn, the following results hold:

• COR(EQn) ≥ n, CAND(EQn) ≤ �log n� + 2, CEXOR(EQn) ≥ n.

• COR(GTn) ≥ n, CAND(GTn) ≥ n, CEXOR(GTn) ≥ n.

• COR(DISn) ≥ n, CAND(DISn) ≤ �log n� + 2, CEXOR(DISn) ≥
n − �log(n + 1).

• COR(IPn) ≥ n − 1, CAND(IPn) ≥ n, CEXOR(IPn) ≤ �log n� + 2.

• If and Alice and Bob each know n/2 bits of one of the factors, then
COR(MULn) ≥ �n/8� − 1, CAND(MULn) ≥ �n/8� − 1, CEXOR(MULn) ≥
�n/8� − 1.

Proof. We begin with the three upper bounds, which have similar proofs. In
a nondeterministic protocol for EQn Alice can nondeterministically generate
i ∈ {1, . . . , n} and send i and ai to Bob. Bob tests whether ai �= bi, and sends
the result to Alice. Alice accepts the input if ai �= bi. Thus CAND(EQn) =
COR(EQn) ≤ �log n� + 2. The same protocol with the test ai = bi = 1 shows
that CAND(DISn) ≤ �log n� + 2 and CEXOR(IPn) ≤ �log n� + 2. In the latter
case there are exactly as many accepting computation paths as there are
summands aibi with the value 1.

The lower bounds follow from Theorems 15.3.3 and 15.3.4 and from the
results in Section 15.2 for the example functions. The function EQn has a
1-fooling set of size 2n and the Z2-rank of the communication matrix is 2n.
The function GTn has a 1-fooling set of size 2n − 1 and a 0-fooling set of
size 2n, and the Z2-rank of the communication matrix is 2n − 1. The function
DISn has a 1-fooling set of size 2n.

To estimate CEXOR(DISn) we describe a sufficiently large submatrix of the
communication matrix that has full rank. For this we consider only inputs
(a, b) for which a has exactly �n/2 1’s and b has exactly �n/2� 1’s. We now
select a convenient numbering of the rows and columns. If the input a belongs
to the i-th row, then the bitwise complement b := a should belong to the i-th
column. Using this numbering, the resulting submatrix is the identity matrix
which only has 1’s on the main diagonal. This is because two vectors with
�n/2 or �n/2� 1’s can only fail to have a 1 in the same position if one is the
bitwise complement of the other. The identity matrix has full rank

(
n

	n/2

)
over Z2. Since

(
n

	n/2

)
is the largest of the n + 1 binomial coefficients

(
n
k

)
for

k ∈ {0, . . . , n},
(

n
	n/2

)
≥ 2n/(n + 1). So by the rank method it follows that

CEXOR(DISn) ≥ n − �log(n + 1). The lower bound can be improved if we
approximate the binomial coefficient using Stirling’s formula.

In the proof of Theorem 15.2.7 we showed that | IP−1
n (0)| > 22n/2 and that

every 0-rectangle covers at most 2n 0’s. From this we obtain the lower bound
for CAND(IPn). The subfunction of IPn, for which an = bn = 1 is IPn−1.
Since COR(IPn−1) = CAND(IPn−1) ≥ n−1, it follows that COR(IPn) ≥ n−1.

15.3 Nondeterministic Communication Protocols 237

Finally, we showed in the proof of Theorem 15.2.12 that CAR�n/8�−1 is a sub-
function of MULn with the given partition of the variables. We reduced this
problem to GT�n/8�−1 via a rectangular reduction. Thus the lower bounds for
MULn follow from the lower bounds for GTn and the property that for any
function f , CEXOR(f) = CEXOR(f). This last property is simple to show. The
number of paths to 1-leaves is increased by 1 if at the root it is nondetermin-
istically decided whether a 1-leaf is reached directly or the given protocol is
used. ��

The communication complexity of any function f : {0, 1}n × {0, 1}n →
{0, 1} is bounded above by n + 1. For many of the decision and optimiza-
tion problems we have considered, a runtime of 2n was the worst possi-
ble case, and exponentially better runtimes, that is polynomial time, were
considered efficient. In analogy to this situation we will consider a function
f : {0, 1}n×{0, 1}n → {0, 1} with polylogarithmic communication complexity
as efficiently solvable by communication protocols. So we will let Pcom, NPcom,
co-NPcom, and NPEXOR

com be the complexity classes of all functions f = (fn) with
fn : {0, 1}n × {0, 1}n → {0, 1} that have deterministic, OR-nondeterministic,
AND-nondeterministic, or EXOR-nondeterministic communication complex-
ity bounded by a polynomial in logn.

Theorem 15.3.5 together with the fact that COR(f) = CAND(f) and the
results from Section 15.2 says that the four complexity classes just defined are
pairwise distinct. None of the three nondeterministic classes contains another.
From this perspective we have answered many central questions with relatively
simple methods. In conclusion, we will show that Pcom = NPcom ∩ co-NPcom,
formulating the result as an upper bound for deterministic communication
complexity.

Theorem 15.3.6. C(f) = O(COR(f) · CAND(f)).

Proof. Alice and Bob agree on a cover of the 1-inputs of the communication
matrix with NOR(f) 1-rectangles, and on a numbering of this cover. They also
agree on a cover of the 0-inputs with NAND(f) 0-rectangles. These covers form
the basis of their protocol which will make use of the following property of
rectangles: If the rectangles R and R′ both intersect row a and column b, then
they both contain (a, b), and therefore their intersection is non-empty. This
means that a 1-rectangle R and a 0-rectangle R′ can share rows or columns,
but not both. So for any 1-rectangle R and a set of 0-rectangles, either at
least half of the set of 0-rectangles have no row in common with R or at least
half of the set of 0-rectangles have no column in common with R.

The protocol consists of at most �log NAND(f)� phases. In each phase only
�log NOR(f)� + O(1) bits are communicated. The bound then follows from
Theorem 15.3.2. Alice and Bob maintain a candidate set K of all 0-rectangles
from the chosen cover that could contain the particular input (a, b). At the
beginning this set contains all NAND(f) rectangles in the cover of the 0’s in

238 15 Communication Complexity

the communication matrix. If K = ∅, then the communication ends with the
result “f(a, b) = 1”.

If K �= ∅, then Alice checks whether there is a rectangle R in the 1-cover
such that at most half of the 0-rectangles in K share a row with R. If there
is such a rectangle, then Alice sends its index to Bob. Otherwise she informs
Bob that there is no such rectangle. In the first case, both Alice and Bob can
compute which 0-rectangles from K are still candidates, namely those that
have a row in common with R. In this case the size of K has been reduced by
at least half. In the second case Bob checks whether there is a rectangle R′

belonging to the 1-cover that intersects column b and such that at most half
of the 0-rectangles in K share a column with R′. He sends the corresponding
message, and if his search was successful, the size of K has once again been
cut in half.

Now we just need to describe what happens when neither Alice nor Bob
find a suitable rectangle. In this case the communication ends with the result
“f(a, b) = 0” because if f(a, b) = 1, then the rectangle R in the 1-cover that
covers (a, b) must have the property that either at most half of the rectangles
in K have a row in common with R or at most half of the rectangles in K
have a column in common with R. Thus if f(a, b) = 1, then either Alice or
Bob will find a suitable rectangle. ��

Some functions have nondeterministic communication protocols that
are exponentially shorter than the best deterministic ones. The class of
such functions depends on the type of nondeterminism selected. Lower
bounds for nondeterministic communication complexity can be derived
from the lower bound methods for the deterministic case, but which
methods can be carried over depends on the type of nondeterminism.

15.4 Randomized Communication Protocols

We now turn our attention to randomized communication protocols with small
error- or failure-rates. As in Section 3.3 we will distinguish between the fol-
lowing situations:

• The protocol is error-free and we are interested in the worst-case (with
respect to inputs) expected (with respect to the random bits) length of a
protocol. The corresponding complexity measure is R0(f).

• The protocol is error-free, but it can fail, which we represent with the
answer “?”. For an allowed failure-rate of ε < 1 we have the complexity
measure R?,ε(f).

• For functions f : A × B → {0, 1}, one-sided error bounded by ε < 1
means that inputs from f−1(0) are processed without error while inputs
from f−1(1) have an error-rate of at most ε. The corresponding complexity
measure in this case is R1,ε(f).

15.4 Randomized Communication Protocols 239

• The complexity measure R2,ε(f) corresponds to protocols for which the
error-probability is bounded by ε < 1/2 for all inputs. If f : A×B → {0, 1}
this is two-sided error.

The question is how robust these complexity measures are against changes
in the parameter ε. Communication protocols are algorithms and there-
fore the methods from Section 3.3 can be used. There we were considering
polynomial time-bounded algorithms, and so polynomially many indepen-
dent repetitions of the algorithm were unproblematic. Here, for a function
f : {0, 1}n × {0, 1}n → {0, 1} the deterministic communication complexity is
always bounded by n + 1. In many cases we can even determine the commu-
nication complexity asymptotically exactly. So if we only consider constant
factors to be unproblematic, then we can only consider constantly many inde-
pendent repetitions of a protocol to be unproblematic. The results and proofs
in Section 3.3 and the comments just made lead directly to the following
results.

Theorem 15.4.1. For randomized communication complexity and ε < 1 the
following relationships hold:

• R0(f) ≤ 2 · R?,1/2(f).
• R?,1/2(f) ≤ 2 · R0(f).
• R?,εk(f) ≤ k · R?,ε(f).
• R1,εk(f) ≤ k · R1,ε(f).
• R2,2−k(f) ≤ �(2 · ln 2) · k · ε−2� · R2,1/2−ε(f) for 0 < ε < 1/2. ��

We can also apply the proof that ZPP = RP∩ co-RP (Theorem 3.4.3) to
communication complexity:

Theorem 15.4.2. For 0 < ε < 1/2 we have

R?,ε(f) ≤ R1,ε(f) + R1,ε(f) . ��

In order to learn how good randomized communication protocols can
be, we will consider the example of the equality test EQn. The result
CAND(EQn) ≤ �log n� + 2 from Theorem 15.3.5 can be interpreted in a new
way. There we selected i at random and tested the property “ai �= bi”. If
a �= b, then with probability at least 1/n an index i is chosen for which
ai �= bi. So R1,1−1/n(EQn) ≤ �log n�+ 2. Independent repetitions do no allow
us to achieve constant error-probabilities for short protocols. In order to have
(1 − 1/n)k ≤ 1/2, we would need k = Ω(n).

Now we will introduce one of the fundamental techniques for designing
randomized communication protocols. For a deterministic decision of whether
a = b, it is optimal for Alice to send Bob her entire input. If we allow errors,
then it is sufficient for Alice to send Bob a fingerprint of a. Fingerprints of
different individuals a and a′ can only be the same with small probability. The
term fingerprint can be a bit misleading. While a person’s finger only has one
fingerprint, we will assign to each a ∈ {0, 1}n many different fingerprints in

240 15 Communication Complexity

such a way that distinct inputs a and a′ have only few fingerprints in common.
So for a random choice of fingerprint, Bob can check the property “a �= b”
with small error-probability.

Theorem 15.4.3. R1,1/n(EQn) = O(log n).

Proof. Alice and Bob interpret their inputs as binary numbers 〈a〉, 〈b〉 ∈
{0, . . . , 2n − 1}. Both of them compute the n2 smallest prime numbers. From
number theory we know that the size of these prime numbers is O(n2 log n)
and so each of these primes can be described with O(log n) bits. Alice ran-
domly selects one of these prime numbers, and sends to Bob the type of fin-
gerprint (p) and the fingerprint itself, namely 〈a〉 mod p. Bob checks whether
〈a〉 ≡ 〈b〉 mod p, and sends the result of this test back to Alice. The input is
rejected if 〈a〉 ≡ 〈b〉 mod p. The length of this protocol is Θ(log n) and inputs
(a, b) with a = b are always rejected. We need to approximate the probability
that an input (a, b) is accepted if a �= b. If there are k primes among the small-
est n2 primes for which 〈a〉 ≡ 〈b〉 mod p, then this probability is k/n2. We will
show that there are fewer than n primes p such that 〈a〉 ≡ 〈b〉 mod p, i.e., that
k < n. For this we need a simple result from elementary number theory. If
〈a〉 ≡ 〈b〉 mod m1 and 〈a〉 ≡ 〈b〉 mod m2 for two relatively prime numbers m1

and m2, then 〈a〉 ≡ 〈b〉 mod m1m2 as well. The assumptions say that 〈a〉−〈b〉
is an integer multiple of m1 and an integer multiple of m2. Since m1 and m2

are relatively prime, 〈a〉 − 〈b〉 must then be an integer multiple of m1m2. If
〈a〉 ≡ 〈b〉 mod p for n prime numbers p, then this will also be true for their
product. But since each of these primes is at least 2, their product must be
greater than 2n. But if 〈a〉 ≡ 〈b〉 mod N for an integer N with N ≥ 2n, then
〈a〉 = 〈b〉, so a = b. Thus the error-probability is bounded by n/n2 = 1/n.

��

When we defined randomized communication protocols in Section 15.3 we
emphasized that Alice knows rA but not rB and that Bob knows rB but not
rA. What difference does it make if we have only one random vector of length
lA + lB which is known to both Alice and Bob? To distinguish between these
two models, we will say that our original model uses private coins, and that
the modified model uses public coins. We will use a superscripted “pub” in
our notation to distinguish the public-coin complexity measures from their
private-coin counterparts. Clearly Theorem 15.4.1 is still valid for protocols
with public coins. Furthermore,

Remark 15.4.4. A protocol with private coins can be simulated by a protocol
with public coins. So for example, Rpub

2,ε (f) ≤ R2,ε(f).

Proof. Let lA and lB be the lengths of the random vectors for Alice and Bob
in a protocol with private coins. The protocol with public coins uses a random
vector of length lA + lB . During the simulation, Alice uses the prefix of the
random vector of length lA, and Bob uses the suffix of length lB . ��

15.4 Randomized Communication Protocols 241

Public coins sometimes lead to short and elegant protocols, as the following
result shows.

Theorem 15.4.5. Rpub
1,1/2(EQn) ≤ 2.

Proof. Alice and Bob use a public random vector r ∈ {0, 1}n. Alice computes
the Z2-sum of all airi with 1 ≤ i ≤ n and sends the result hr(a) to Bob.
The notation hr should remind us of the hash function used in the proof
of Theorem 11.3.4. Bob computes hr(b) and sends the result to Alice. They
accept the input if hr(a) �= hr(b). The length of the protocol is 2. If a = b,
then hr(a) = hr(b) for all r and the protocol works without error. If a �= b,
then there is a position i with ai �= bi. By symmetry it suffices to consider the
case that ai = 0 and bi = 1. Let h∗

r(a) be the Z2-sum of all ajrj with j �= i;
h∗

r(b) is defined analogously. Then hr(a) = h∗
r(a) and hr(b) = h∗

r(b) ⊕ ri. So
the probability that hr(a) = hr(b) is exactly 1/2 and so the error-rate is 1/2.

��

Is it possible for R1,ε(f) and Rpub
1,ε (f) or R2,ε(f) and Rpub

2,ε (f) to differ

even more strongly? It can be shown that R1,1/4(EQn) ≥ R2,1/4(EQn) =
Ω(log n). On the other hand, by Theorems 15.4.5 and 15.4.1 it follows that

Rpub
1,1/4(EQn) ≤ 4. Thus we already have an example where the difference

between the two models is essentially as large as possible.

Theorem 15.4.6. Let f : {0, 1}n×{0, 1}n → {0, 1} and δ > 0 be given. Then

• R2,ε+δ(f) ≤ Rpub
2,ε (f) + O(log n + log δ−1), and

• R1,ε+δ(f) ≤ Rpub
1,ε (f) + O(log n + log δ−1).

Proof. In this proof we use the fact that communication protocols are a non-
uniform model. The protocols generated here are not in general efficiently
computable. In this aspect and in the methodology we orient ourselves on
the proof that BPP ⊆ P/poly (Theorem 14.5.1, Corollary 14.6.3). In that case
there was a single golden computation path. Here we will show that there
are t = O(n · δ−2) computation paths such that the random choice of one of
these computation paths only lets the error-probability grow from ε to ε + δ.
From this the claims of the theorem follow easily. Alice and Bob agree on the
good computation paths, and Alice generates with her private random bits a
random i ∈ {1, . . . , t} and sends i to Bob using O(log t) = O(log n + log δ−1)
bits. Then Alice and Bob simulate the ith of the selected computation paths.

Suppose we have an optimal randomized communication protocol with a
public random vector r of length l. The two cases, namely one-sided error and
two-sided error, are handled with the same argument. Let Z(a, b, r∗) = 1 if
the given protocol on input (a, b) with r = r∗ provides an incorrect result, and
let Z(a, b, r∗) = 0 otherwise. We can imagine the Z-values as a matrix, the
rows of which represent the inputs (a, b) and the columns the vectors r∗. By
assumption, the proportion of 1’s in each row is bounded by ε (for one-sided

242 15 Communication Complexity

error the rows contain no 1’s for (a, b) ∈ f−1(0)). We want to show that there
is a selection of t columns such that each row of the submatrix restricted to
these columns has a proportion of at most ε + δ 1’s (for one-sided error, of
course, the shortened rows contain no 1’s for (a, b) ∈ f−1(0)). With these t
random vectors – or, equivalently, with these t computation paths – we can
complete the argument we began above. To be precise we must mention that
columns may be chosen more than once.

We prove the existence of t such columns using the probabilistic method
(see Alon and Spencer (1992)). This method proves the existence of an object
with certain properties by designing a suitable random experiment and show-
ing that the probability that the result of this experiment is an object with
the desired properties is positive. The potential of this method was first rec-
ognized and employed by Erdős. In our case, we randomly and independently
select t computation paths r1, . . . , rt. Let R be the random variable that takes
on the values r1, . . . , rt each with probability 1/t. By definition

E(Z(a, b, R)) =
∑

1≤i≤t

Z(a, b, ri)/t .

But since r1, . . . , rt are also randomly selected, we can use the Chernoff In-
equality to prove that

Prob
(∑

1≤i≤t

Z(a, b, ri)/t ≥ ε + δ
)
≤ 2e−δ2t .

In Theorem A.2.11 we proved a form of the Chernoff Inequality in which
Prob(X ≤ (1− δ) ·E(X)) is bounded from above. Here we require a Chernoff
Inequality for estimating Prob(X ≥ (1+δ)·E(X)) (see Motwani and Raghavan

(1995)). If t = 2nδ−2 +1, then 2 e−δ2t < 2−2n. Since there are only 22n inputs
(a, b), the probability that∑

1≤i≤t

Z(a, b, ri)/t ≥ ε + δ

is smaller than 1 for any input (a, b). So the probability of a selection of
r1, . . . , rt such that the error-probability for each input is bounded by ε + δ
is positive, and so t suitable vectors r1, . . . , rt must exist. This completes the
proof. ��

For a constant ε < 1/2 in the case of two-sided error (or ε < 1 in the case of
one-sided error) we can choose a constant δ > 0 such that ε+δ < 1/2 (ε+δ < 1
in the case of one-sided error). By Theorem 15.4.1 and Theorem 15.4.6 it
follows that

R2,ε(f) = O(Rpub
2,ε (f) + log n)

and
R1,ε(f) = O(Rpub

1,ε (f) + log n) .

15.4 Randomized Communication Protocols 243

These results demonstrate a certain robustness of our model of randomized
communication protocols with private coins. We have also already encoun-
tered a method for designing short randomized communication protocols.
Lower bounds for one-sided error follow from lower bounds for nondetermin-
istic communication protocols. But what is the situation for randomized com-
munication protocols with two-sided error? As in Section 9.2 we will make use
of the theory of two-person zero-sum games to characterize Rpub

2,ε (f) using a
measure for deterministic protocols and randomly selected inputs.

For f : A × B → C we consider probability distributions p on A × B
and investigate deterministic protocols such that the error-probability with
respect to p is bounded by ε. We let Dp,ε(f) denote the length of the shortest
deterministic protocol that for a p-random choice of input yields an error-
probability bounded by ε. The corresponding complexity measure is called
(p, ε)-distributional communication complexity, but it is clearer to speak of
this as the complexity of ε-approximations for f with respect to p.

Theorem 15.4.7. For any function f : A × B → C and each δ > 0,

• Rpub
2,ε (f) ≥ max{Dp,ε(f) | p a distribution on A × B}, and

• Rpub
2,ε+δ(f) ≤ max{Dp,ε(f) | p a distribution on A × B}.

Proof. For the proof of the lower bound we assume there is a randomized
communication protocol of length Rpub

2,ε (f) with an error-probability of ε. The
error-bound is valid for every input (a, b), and thus also for any input randomly
selected according to the distribution p and A×B. If the randomized protocol
uses a random vector r of length l, then we are dealing with a random choice
from among 2l deterministic protocols. If all of these protocols had an error-
probability greater than ε with respect to p, then the randomized protocol
would also have an error-probability greater than ε, which would contradict
the assumption. Therefore there must be a deterministic protocol with length
Rpub

2,ε (f) that has an error-probability bounded by ε with respect to p-random
inputs.

For the proof of the other inequality we investigate the following two-
person zero-sum game. For d := maxp{Dp,ε(f)}, Alice can select a determin-
istic communication protocol P of length d and Bob gets to choose the input
(a, b). The payoff matrix M has a 1 in position ((a, b), P) if the protocol P
makes an error on input (a, b), otherwise this position contains a 0. Recall
that Alice must pay this amount to Bob. By the definition of d, against each
randomized strategy of Bob (that is, for each probability distribution p on
A × B), Alice has a deterministic strategy (that is, a deterministic commu-
nication protocol) for which her expected payout is bounded by ε. So the
value of the game is bounded by ε. By the Minimax Theorem (see Owen
(1995)) it follows that there is a randomized strategy for Alice (i.e., a prob-
ability distribution over the protocols of length at most d) that guarantees
for each input (a, b) an error-probability of at most ε. For Alice and Bob to
produce a common communication protocol from this, they must be able to

244 15 Communication Complexity

make the corresponding random decision. This is possible using a common
random vector, i.e., with public coins. To be precise, Alice and Bob would
need an infinite sequence of random bits to correctly realize probabilities like,
for example, 1/3. But with finitely many random bits they can approximate
any error-probability ε arbitrarily accurately. ��

We can omit the additive term δ for the error-probability if we allow the
individual random bits to take on the value 1 with a probability that is not
necessarily 1/2 but is instead pi for the ith random bit. We won’t pursue
this idea further here since we are primarily interested in the “≥” part of
Theorem 15.4.7. In order to prove lower bounds for Rpub

2,ε (f) we can choose
a distribution p on A × B and prove a lower bound for Dp,ε(f). This is one
form of Yao’s minimax principle.

Now, of course, we have the difficulty of proving lower bounds for Dp,ε(f).
Since we are once again dealing with deterministic protocols, we can hope to
make use of our techniques involving sizes of rectangles with various proper-
ties. Since we may make errors on some of the inputs, the rectangles describ-
ing the inputs that lead to a leaf v may not be monochromatic. But if the
error-probability is small, then these rectangles will either be small or almost
monochromatic with respect to p. For f : A × B → {0, 1}, a probability dis-
tribution p on A × B, and a rectangle R ⊆ A × B, let R0 := f−1(0) ∩ R and
R1 := f−1(1) ∩ R, and let the discrepancy of R with respect to f and p be
defined by

Discp,f (R) := |p(R1) − p(R0)| .

It follows that Discp,f (R) ≤ p(R) and that small rectangles cannot have large
discrepancy. Finally, let

Discp(f) := max{Discp,f (R) | R ⊆ A × B and R is a rectangle}

be the discrepancy of f with respect to p. The following result shows that a
small discrepancy implies a large communication complexity with respect to
the distribution, and thus a large communication complexity with respect to
randomized protocols with two-sided error.

Theorem 15.4.8. If f is a function f : A × B → {0, 1}, p a probability
distribution on A × B, and 0 < ε ≤ 1/2, then

Dp,1/2−ε(f) ≥ log(2ε) − log(Discp(f)) .

Proof. This result follows directly from the definitions and a simple calcula-
tion. We consider a deterministic protocol of length d := Dp,1/2−ε(f) with
an error-probability of at most 1/2 − ε with respect to p. The corresponding
protocol tree has at most 2d leaves v ∈ L at which precisely the inputs in the
rectangle Rv ⊆ A × B arrive. The rectangles Rv for v ∈ L form a partition
of A × B. Let E+ denote the set of all inputs on which the protocol works
correctly, and let E− := (A × B) − E+ be the set of all inputs on which

15.4 Randomized Communication Protocols 245

the protocol makes an error. By our assumption, p(E−) ≤ 1/2 − ε and so
p(E+) ≥ 1/2 + ε. It follows that

2ε ≤ p(E+) − p(E−)

=
∑
v∈L

(
p(E+ ∩ Rv) − p(E− ∩ Rv)

)
≤
∑
v∈L

|p(E+ ∩ Rv) − p(E− ∩ Rv)|

=
∑
v∈L

Discp,f (Rv)

≤ 2d Discp(f).

Here we are only using the definitions of Discp,f (R) and Discp(f). We obtain
the claim of the theorem by solving this inequality for d := Dp,1/2−ε(f). ��

It is not always easy to apply this method. As an example we will inves-
tigate IPn.

Theorem 15.4.9. If 0 < ε ≤ 1/2, then

Rpub
2,1/2−ε(IPn) ≥ n/2 + log ε .

Proof. By Theorem 15.4.7 and Theorem 15.4.8 it suffices to prove for some
distribution p on {0, 1}n×{0, 1}n an upper bound of 2−n/2 for the discrepancy
of arbitrary rectangles A × B. We will use the uniform distribution u on
{0, 1}n × {0, 1}n. In addition, we will replace the 1’s in the communication
matrix with −1’s and the 0’s with 1’s. The result is the Hadamard matrix Hn

introduced in Section 15.2. This has the advantage that we can now compute
the discrepancy (now with respect to the colors 1 and −1) algebraically. By
definition

Discu,IPn
(A × B) =

∣∣#{(a, b) ∈ A × B | Hn(a, b) = 1}−

#{(a, b) ∈ A × B | Hn(a, b) = −1}
∣∣/22n

=

∣∣∣∣∣∣
∑

(a,b)∈A×B

Hn(a, b)

∣∣∣∣∣∣ /22n.

Let eA ∈ {0, 1}2n

be the characteristic vector of A ⊆ {0, 1}n, and let eB be
the characteristic vector of B ⊆ {0, 1}n. Then e�A ·Hn · eB sums exactly those
Hn(a, b) with (a, b) ∈ A × B. Thus

Discu,IPn
(A × B) = |e�A · Hn · eB |/22n

246 15 Communication Complexity

and it is sufficient to demonstrate an upper bound of 23n/2 for |e�A ·Hn ·eB |. For
this we can make use of the algebraic properties of Hn. For the 2n×2n-identity
matrix In it follows by simple computation that

Hn · H�
n = 2n · In .

The matrix Hn · H�
n has in position (a, b) the entry∑

c∈{0,1}n

Hn(a, c) · Hn(b, c) .

If a = b, then Hn(a, c) = Hn(b, c) ∈ {−1,+1}, Hn(a, c) · Hn(b, c) = 1 and
the sum is 2n. As in the proof of Theorem 15.4.5, if a �= b, then IPn(a, c) =
IPn(b, c) for exactly half of all c ∈ {0, 1}n. So half of all Hn(a, c) · Hn(b, c)
have the value 1, and the other half have the value −1. Thus the sum of these
values is 0. Since In has only one eigenvalue, namely 1, the only eigenvalue of
Hn · H�

n = 2n · In is 2n. From this it follows that the spectral norm ||Hn||2
of Hn has the value 2n/2. The norm of vectors is their Euclidean length.
Thus ||eA||2 = |A|1/2 ≤ 2n/2 and ||eB ||2 ≤ 2n/2. These norms measure how
much vectors are lengthened when multiplied by the vector or matrix being
investigated. Thus

|e�A · Hn · eB | ≤ ||eA||2 · ||Hn||2 · ||eB ||2 ≤ 23n/2

and Discu,IPn
(A × B) ≤ 2−n/2 for arbitrary rectangles A × B. ��

Randomized communication protocols, even with very small error-
probabilities, can be exponentially shorter than deterministic commu-
nication protocols. It doesn’t make much difference if the random bits
are public or private. If with respect to some probability distribution
on the inputs every rectangle of the communication matrix contains
roughly half 0’s and half 1’s, then the randomized communication com-
plexity of the corresponding function is large.

15.5 Communication Complexity and VLSI Circuits

We will be satisfied with a naive understanding of VLSI circuits based on
the simple model described below. The lower bounds we obtain for this sim-
ple model will certainly hold for any more realistically restricted model. We
imagine a VLSI circuit as a rectangular grid of length l and width w. The grid
has area A := lw and consists of lw cells. Each cell can hold at most one bit
of the input and is potentially connected only to the (at most four) cells with
which it shares a cell wall. In each time unit at most one bit can be sent in
one direction across each connection. For functions with one output y there is
a cell that contains this result at the end of the computation. A VLSI circuit
with eight inputs and one output is shown in Figure 15.5.1.

15.6 Communication Complexity and Computation Time 247

y

x1

x2

x3

x4

x5

x6

x7

x8

Fig. 15.5.1. A VLSI circuit of width 6 and length 4.

We can see from this diagram that it will always be possible to cut the
circuit so that �n/2 inputs are on one side of the cut and �n/2� inputs are
on the other side and such that the cut consists of at most l + 1 cell walls.
By symmetry we can assume that l ≤ w and thus that l ≤ A1/2. In each time
unit, at most l + 1 bits can be communicated across this cut. If we partition
the input bits in such a way that Alice receives the bits on one side of the
cut and Bob the bits on the other side, then we can establish a connection
among the communication complexity of f with respect to this partition of
the input bits, the area A, and the parallel computation time T of the VLSI
circuit, namely

C(f) ≤ (A1/2 + 1) · T + 1 .

This is because in each of the T time steps at most A1/2 + 1 bits can be
sent across the cut. This can be simulated by a deterministic communication
protocol. The extra summand +1 is necessary, since in the VLSI circuit only
one cell, i.e., only Alice or only Bob, must know the result. In a communication
protocol this result must be communicated. Since the complexity of VLSI
circuits is usually measured in terms of AT 2, our result can be expressed as
AT 2 = Ω(C(f)2).

As we see, we cannot partition the input arbitrarily. For the middle bit
of multiplication (MUL), however, we have proven a linear lower bound for
the communication complexity that is valid for any partition of the input bits
that gives half of the bits of the first factor to each of Alice and Bob. If we
modify our cut in the VLSI circuit so that it only takes into consideration
the bits of the first factor, then we can still apply the observations above to
obtain the following result:

Theorem 15.5.1. For VLSI circuits that compute the middle bit of multipli-
cation for two factors of length n, AT 2 = Ω(n2). ��

15.6 Communication Complexity and the Computation

Time of Turing Machines

Turing machines with k tapes and runtime t(n) can be simulated by Turing
machines with one tape and runtime O(t(n)2). Is this quadratic slowdown

248 15 Communication Complexity

necessary? At least for linear runtimes we can answer these questions by giving
a language that can be decided in linear time by a Turing machine with two
tapes but requires quadratic time for any Turing machine with only one tape.
For f = (fn) with fn : {0, 1}n × {0, 1}n → {0, 1} let

L∗
f = {acb : |a| = |c| = |b|, a, b ∈ {0, 1}∗, c ∈ {2}∗, f|a|(a, b) = 1} .

Remark 15.6.1. The language L∗
EQ can be decided by a two-tape Turing ma-

chine in time O(n).

Proof. In one pass over the input tape we can test whether the input has the
form acb with a, b ∈ {0, 1}∗ and c ∈ {2}∗, and simultaneously copy b to the
second tape. By reading a and b at the same time, we can test whether they
have the same length, and if so, we can compute EQn(a, b). Finally, we can
check whether b and c have the same length. ��

More interesting than this simple observation is the proof of a lower bound
for the runtime of Turing machines with only one tape.

Theorem 15.6.2. If the language L∗
f for f = (fn) is decided by a one-tape

Turing machine M in time t(n), then

Rpub
0 (fn) = O(t(3n)/n + 1) .

Proof. We want to design a randomized, error-free communication protocol for
fn that has a small expected length for every input. Alice knows a ∈ {0, 1}n,
and Bob knows b ∈ {0, 1}n. In particular, each of them knows n and the
way M works on the input w = a2nb, where 2n denotes a sequence of n 2’s.
With the help of the publicly known random vector, Alice and Bob select a
random i ∈ {0, . . . , n}. This is used to divide the tape of M between Alice
and Bob. Alice receives the left portion, up to cell n+ i, and Bob receives the
rest. Since the head of M is reading a1 at the beginning of the computation,
Alice can simulate the first portion of the computation. When M crosses over
the dividing line from left to right, Alice sends Bob the state of the Turing
machine. This requires only �log |Q|� = O(1) bits. Now Bob can simulate the
Turing machine until the dividing line is crossed from right to left and send
Alice the state of the Turing machine at that point. This process continues
until the machine halts. At that point, one of Alice and Bob knows the result
and communicates it to the other. This protocol is error-free since M is error-
free and correctly simulated.

Now let zi = zi(a, b) be the number of computation steps at which the
dividing line between tape cells n + i and n + i + 1 is crossed. Since at each
step at most one dividing line can be crossed and |w| = 3n it follows that

z0 + · · · + zn ≤ t(3n)

and

15.6 Communication Complexity and Computation Time 249

(z0 + · · · + zn)/(n + 1) ≤ t(3n)/n .

So on average, Alice and Bob send at most t(3n)/n messages of length O(1)
and at the end one additional message of length 1. This proves the theorem.

��

By Theorem 15.3.5 COR(EQn) ≥ n, and thus R1,2/3(EQn) ≥ n. So by

Theorem 15.4.6 Rpub
1,1/2(EQn) = Ω(n). By the variant of Theorem 15.4.1 for

protocols with public coins, it follows that Rpub
0 (EQn) = Ω(n). Finally, using

Theorem 15.6.2 we obtain the desired result:

Theorem 15.6.3. For one-tape Turing machines that decide L∗
EQ in time

t(n), t(n) = Ω(n2). ��

The results of the last two sections show that results about the com-
munication complexity of specific problems can support the solution of
problems from very different areas.

16

The Complexity of Boolean Functions

16.1 Fundamental Considerations

We have already emphasized several times that there is a close relationship
between decision problems or languages L ⊆ {0, 1}∗ and families of Boolean
functions f = (fn) with one output. For each language L there is a family
of functions fL = (fL

n) such that fL
n : {0, 1}n → {0, 1} takes on the value 1

for input a if and only if a ∈ L. And for each f = (fn) with fn : {0, 1}n →
{0, 1} there is a decision problem Lf that is the union of all f−1

n (1). When
we consider families of Boolean functions, however, we focus our attention
on the individual functions fn; we are interested in non-uniform complexity
measures like size and depth of circuits or the size and length of branching
programs. In Chapter 14 we discussed the differences between uniform and
non-uniform complexity measures and in Chapter 15 we investigated the non-
uniform measure of communication complexity. Now we want to attempt to
prove lower bounds for the complexity of Boolean functions with respect to
the complexity measures just mentioned.

In principle this is an easy task. There are 22n

Boolean functions
f : {0, 1}n → {0, 1} and only 2O(s log(s+n)) syntactically different circuits with
s gates. This bound follows from the fact that each gate must realize one of
finitely many operations and has as inputs two of the at most s+n+2 possi-
bilities. So for a suitable choice of c > 0, we cannot realize all of the Boolean
functions with only c · 2n/n gates. Now if we let fn be the first function in
a lexicographically ordered list of all function tables that has no circuit with
c · 2n/n or fewer gates, then we have a family f = (fn) of Boolean functions
with high circuit complexity.

But this is not what we are after. We have been particularly interested
in problems that are NP-easy, and especially in decision problems belonging
to NP. In the same way, we want to concentrate now on families f = (fn) of
Boolean functions for which the corresponding decision problem Lf is in NP.
For restricted models, like depth-bounded circuits, we can show exponential
lower bounds for functions f = (fn) for which the corresponding decision

252 16 The Complexity of Boolean Functions

problems can be computed in polynomial or even in linear time. In order to
rule out counting tricks and diagonalization arguments, we will restrict our
attention to Boolean functions fn : {0, 1}n → {0, 1} that can be explicitly de-
fined. In investigations that go beyond what we will cover here, there are vari-
ous degrees of “explicitly defined”, but for our purposes the requirement that
Lf ∈ NP will suffice. The basic idea is to prove lower bounds for the complexity
of explicitly defined Boolean functions with respect to non-uniform complex-
ity measures that are as large as possible. For communication complexity we
were able to prove linear lower bounds, which are the best possible. For cir-
cuits and branching programs we are still far from the best possible lower
bounds. Therefore we pursue three related goals, namely

• the hunt for ever better bounds for explicitly defined Boolean functions
and the various non-uniform complexity measures;

• the development of methods for proving lower bounds for various non-
uniform complexity measures; and

• the estimation of the complexity of important Boolean functions.

The structure of this chapter follows the various non-uniform complexity
measures. In Section 16.2 we investigate circuit size, and in Section 16.3,
circuit depth. The special case of monotone circuits will be mentioned briefly.
The results for general circuits are sobering. Much better results are possible
if we remove the restrictions on the input degrees of the gates but drastically
restrict the depth of the circuits. We will treat this model with generalized
AND- and OR-gates in Section 16.4. We will also discuss some methods that
work as well for generalized EXOR-gates. In Section 16.5 we will investigate an
analogous model for so-called threshold circuits. These are important for two
reasons. On the one hand we obtain a model for discrete neural nets without
feedback, and on the other hand the limits of our techniques for proving
lower bounds are especially clear to see in this model. In Section 16.6 we
consider general and restricted branching programs. After developing methods
for proving lower bounds and applying them to a few example functions in
Sections 16.2–16.6, in Section 16.7 we introduce reduction concepts that allow
us to extend these results from a few functions to many.

16.2 Circuit Size

Circuits are of clear importance as a canonical model of hardware. Recall
that gates have two inputs and that any of the 16 Boolean functions can be
applied to these inputs. The circuit size of fn is the smallest number of gates
that suffice to compute fn. For a long time now, the record lower bound for
explicitly defined Boolean functions has remained 3n − O(log n). We should
note that there is a trivial lower bound of n− 1 for all functions that depend
essentially on all n inputs, where we say that a function fn depends essentially
on xi if the two subfunctions fn|xi=0 : {0, 1}n → {0, 1} and fn|xi=1 : {0, 1}n →

16.2 Circuit Size 253

{0, 1} defined by fn|xi=b(a) := fn(a1, . . . , ai−1, b, ai+1, . . . , an−1) are different.
In this case at least one gate must have each xi as input. If fn depends
essentially on n variables, then the circuit consists of a directed acyclic graph
with n inputs and one sink, corresponding to the output of the function. Since
this graph is connected, it must contain at least n − 1 internal nodes, which
correspond to the gates of the circuit. On the other hand, the few proofs of
lower bounds of size (2 + ε)n for ε > 0 are complicated. We will be satisfied
to show a bound of (2n− 3) using the method of gate elimination – the same
method that forms the basis for all larger lower bounds.

The bound we will show is for a so-called threshold function. The threshold
function Tn

≥k is defined on n inputs and returns a value of 1 if and only if at
least k of the n inputs have the value 1. The negative threshold function Tn

≤k

is the negation of Tn
≥k+1.

Theorem 16.2.1. The circuit size of Tn
≥2 is at least 2n − 3.

Proof. We will show the claim by induction on n. For n = 2, Tn
≥2(x1, x2) =

x1 ∧ x2 and the claim is immediate, since 2n − 3 = 1 and we can’t possibly
compute Tn

≥2 with no gates.
For the inductive step, the idea is to find a variable xi such that replacing

xi with the constant 0 leads to a circuit with at least two fewer gates. The
missing gates are said to have been eliminated. Since Tn

≥2|xi=0 is equal to the

function Tn−1
≥2 on the remaining variables, the remaining circuit must have at

least 2(n − 1) − 3 gates by the inductive hypothesis. If we have eliminated
at least two gates, then the original circuit must have at least 2n − 3, which
demonstrates the claim.

So consider an optimal circuit for Tn
≥2 and its first gate G1. This has two

different variables as inputs, since otherwise there would be an equivalent
circuit with fewer gates, contrary to the assumption of optimality. For the
same reason, the operation of G1 must be one of the ten Boolean operations
that depend essentially on both inputs. As an exploration of cases shows, for
inputs xi and xj these are the functions

(xa
i ∧ xb

j)
c and (xi ⊕ xj)

c

for a, b, c ∈ {0, 1}. Here x1
i = xi and x0

i = xi. If we set xi = 0, then the gates
that have xi as an input can be eliminated, since they can be combined with
a preceding or following gate to form a single gate. Thus our goal is to show
that one of the variables xi and xj is an input for at least one additional gate.
Setting this variable to 0 will result in the desired elimination of at least two
gates.

For the sake of contradiction assume that G1 is the only gate that uses
xi and xj as input. If G1 is of the first type listed above, then the circuit
for xj := b is independent of xi, although for n ≥ 3 the function Tn

≥2|xj=b

depends essentially on all the rest of the variables. If G1 is of the second
type described above, then we get the same circuit for xi = xj = 0 as for

254 16 The Complexity of Boolean Functions

xi = xj = 1, contradicting the fact that these two subfunctions are different.
This proves the theorem. ��

Unfortunately, this method does not seem powerful enough to prove super-
linear lower bounds. One potential hope is to consider functions fn : {0, 1}n →
{0, 1}n, i.e., functions with n outputs. But so far, it has not been possible to
prove superlinear lower bounds for any such function, even if we restrict the
circuits to depth O(log n).

The investigation of the circuit size of explicitly defined Boolean func-
tions shows clearly how insufficient our reservoir is for proving lower
bounds for complexity with respect to practically important models of
computation.

Monotone circuits are circuits that use only AND- and OR-gates. Not all
Boolean functions have monotone circuits; x1 for example has no such cir-
cuit. To describe the class of functions that can be computed by monotone
circuits, we make use of a natural partial order (≤) on {0, 1}n defined by
(a1, . . . , an) ≤ (b1, . . . , bn) if and only if ai ≤ bi for all i. A Boolean function is
called monotone if f(a) ≤ f(b) whenever a ≤ b. It is not difficult to convince
oneself that the monotone functions are exactly those functions that can be
computed by monotone circuits. With a refinement of the technique of gate
elimination, superlinear lower bounds have been proved for monotone circuits
to compute monotone functions with n outputs. Here n2 is the natural limit,
since superquadratic bounds imply that at least one of the outputs has a su-
perlinear lower bound. Methodologically it was an important step to be able to
measure the progress of a computation at individual gates (Wegener (1982)).
The breakthrough came when this progress was measured approximately in-
stead of exactly. In this way in 1986 (journal version in 1990) Razborov was
able to prove exponential lower bounds for the monotone circuit complexity of
Clique. His proof methods were then extended by Alon and Boppana (1987).

16.3 Circuit Depth

In Section 14.3 we defined formulas as circuits with underlying graphs that are
trees, with the understanding that a variable may occur at many leaves of the
formula tree. The formula size L(f) of a Boolean function f is the minimal
number of gates needed to compute f with a formula. Formula trees for f
have at least L(f)+1 leaves, and so a circuit depth of at least �log(L(f)+1)�.
Since we can unfold circuits into formulas without increasing the depth (see
Section 14.3), we have proven the following remark about the depth D(f) of f .

Remark 16.3.1. For Boolean functions f ,

D(f) ≥ �log(L(f) + 1)�.

16.3 Circuit Depth 255

The following converse is also true: D(f) = O(log L(f)) (see, for example,
Wegener (1987)). Thus the task of proving superlogarithmic bounds for the
depth of functions is equivalent to the task of proving superpolynomial bounds
for the formula size. But we are a long way from bounds of this size. The
largest lower bound for formula size goes back to Nechiporuk (1966) and is
Ω(n2/ log n). This yields a circuit depth lower bound of 2 logn − log log n −
O(1). This is only slightly better than the trivial lower bound of �log n� for
functions that depend essentially on n variables.

This lower bound is based on the observation that small formulas are not
able to compute functions that have an extremely large number of different
subformulas. This method cannot be carried over to general circuits, however.
It is known that there is an explicitly defined function with an asymptotically
maximal number of different subfunctions and linear circuit size.

Theorem 16.3.2. Let S1, . . . , Sk be disjoint subsets of the variable set
X = {x1, . . . , xn}, such that f : {0, 1}n → {0, 1} depends essentially on each
variable x ∈ ∪iSi, and let si be the number of different functions on Si that
we obtain if we replace the variables in X−Si with constants in every possible
way, then

L(f) ≥
(∑

1≤i≤k

(2 + log si)
)
/4 − 1 .

Proof. We show the lower bound by showing a lower bound of (2 + log si)/4
for the number of leaves ti that belong to the variables in Si.

G6

x1 x2 x3 x4 x4 x1 x3 x2

G2G1 G3

G4

G5

G7

Fig. 16.3.1. A formula in which for S1 = {x1, x2} and S2 = {x3, x4} the vertices
from W1 are denoted with arrows from the left and the vertices from W2 with arrows
from the right.

256 16 The Complexity of Boolean Functions

Let Wi be the set of internal vertices (gates) in the formula tree that
have Si-leaves in both their left and right subtrees. For wi := |Wi|, we have
wi = ti−1, since after removing all (X−Si)-leaves and all vertices with fewer
than two inputs, we are left with a binary tree with ti leaves and wi internal
vertices. Now consider paths in the formula tree that start at Si-leaves or at
Wi-vertices, that end at Wi-vertices or at the root of the formula tree, and
that contain no Wi-vertices as internal vertices. If we let pi be the number of
these paths, then pi ≤ 2wi + 1, since only two of these paths arrive at each of
these Wi-vertices plus one additional one at the root, if it is not a Wi-vertex.
In Figure 16.3.1 (G1, G5, G7) is such a path for i = 1. Let g be the function
that is computed at the beginning of one of these paths after some assignment
of all the variables not in Si. Until we reach the last vertex along the path, we
have a subformula that only has g and constants as inputs, and so computes
one of g, g, 0, or 1. So each of the pi paths can only influence the output in
one of four ways. Thus

si ≤ 4pi ≤ 42wi+1 = 42ti−1 = 24ti−2 ,

from which it follows that

log si ≤ 4ti − 2 and ti ≥ (2 + log si)/4 . ��

What is the largest this bound can be asymptotically? For si there are
two upper bounds, namely

• si ≤ 22|Si|

, since the subfunctions are defined on |Si| variables, and
• si ≤ 2n−|Si|, since we obtain the subfunctions by replacing n−|Si| variables

with constants.

With the help of elementary methods from analysis, it can be shown that the
Nechiporuk-bound is O(n2/log n) for each function. This bound is achieved
by a simple function. Consider the following model for indirect storage ac-
cess: ISA = (ISAn), where ISAn is defined on n + k variables x0, . . . , xn−1,
y0, . . . , yk−1 for n = 2m and k := m − �log m. The vector y is inter-
preted as a binary number with value 〈y〉 and corresponds to the 〈y〉th
block of x of length m. If 〈y〉 ≥ �n/m, then let ISAn(x, y) := 0. Other-
wise x(y) := (x〈y〉·m, . . . , x〈y〉·m+m−1) is interpreted as an address and we let
ISAn(x, y) := x〈x(y)〉.

Theorem 16.3.3. For the indirect storage access function (ISA) we have

L(ISAn) = Ω(n2/log n) and D(ISAn) ≥ 2 log n − log log n − O(1) .

Proof. By Remark 16.3.1 it suffices to show the statement for formula size.
We will apply Theorem 16.3.2 to sets Si for 0 ≤ i ≤ �n/m − 1. The set Si

contains the variables xi·m, . . . , xi·m+m−1. In order to estimate the number
of subfunctions on Si, we consider the subfunctions that arise by setting the
y-variables to constants in such a way that 〈y〉 = i. This way the Si-variables

16.3 Circuit Depth 257

represent the direct address required to address a bit in the x-vector. More
precisely, for any α ∈ {0, 1}n−m, let fα be the subfunction of ISAn that results
from setting y so that 〈y〉 = i and setting the x-variables in X−Si according to
the bits of α. Since α forms a portion of the function table for fα, the fα’s are
distinct. Thus si ≥ 2n−m and log si ≥ n − m = Ω(n). The claim now follows
because the number of Si sets that we are considering is �n/m = Ω(n/log n).

��

There are no larger lower bounds known for the depth of circuits of explic-
itly defined Boolean functions, but there is a proof method that at least shows
great potential. This method characterizes the depth of Boolean functions f
using the communication complexity of a related relation Rf .

Definition 16.3.4. For a Boolean function f : {0, 1}n → {0, 1} there is a
relation Rf ⊆ f−1(1) × f−1(0) × {1, . . . , n} that contains all (a, b, i) with
ai �= bi. In the communication game for Rf , Alice knows a ∈ f−1(1), Bob
knows b ∈ f−1(0), and they must agree on an i ∈ {1, . . . , n} with ai �= bi.

The communication game always has a solution, since a ∈ f−1(1) and
b ∈ f−1(0) must be different. Recall that C(Rf) denotes the communication
complexity of Rf . We now consider circuits with the usual inputs x1, . . . , xn, 0,
and 1, and the additional inputs x1, . . . , xn. Furthermore, we will only allow
AND- and OR- gates. The depth of f in this model will be denoted D∗(f). It
follows that

D(f) − 1 ≤ D∗(f) ≤ 2D(f) .

The first of these inequalities follows because the negated inputs can reduce
the depth of the circuit by at most 1. To see why the second inequality is
true we temporarily consider negation to be without cost; that is, negation
is allowed at any point in the circuit, but does not add to its depth. Using
this modified definition of depth, we can construct a circuit that has the same
depth and uses only NOT-, AND-, and EXOR-gates. Since x⊕y = xy+xy, we
can replace the EXOR-gates with circuits of depth 2. This gives a circuit with
at most twice the depth using only AND-, OR-, and NOT-gates. Finally, using
a “bottom-up” application of DeMorgan’s Laws, we can force the negations up
to the inputs without increasing the depth of the circuit. We will investigate
D∗ in order to obtain results about D.

Theorem 16.3.5. If f is a non-constant Boolean function, then D∗(f) =
C(Rf).

Proof. This surprising connection between depth and communication com-
plexity will be illuminated by the proof. We begin with the “≥” direction.
Alice and Bob agree on a formula with optimal depth. They want to use their
communication to find a path from the gate that computes f to an input xi

or xi with ai �= bi, which will then determine i with (a, b, i) ∈ Rf . The bound

258 16 The Complexity of Boolean Functions

follows if for each gate along this path there is exactly one bit of communica-
tion.

Alice and Bob want to select their path in such a way that they only reach
gates G that compute a function g with g(a) = 1 and g(b) = 0. This is initially
true at the gate computing f since by assumption f(a) = 1 �= 0 = f(b). At
gate G we let g1 and g2 denote the functions computed by its two inputs.
There are two cases, depending on whether G is an AND-gate or an OR-gate.
For an AND-gate, g = g1g2, so g1(a) = 1 and g2(a) = 1. On the other hand,
at least one of g1(b) and g2(b) must be 0. Bob can compute which of the two
cases has occurred and communicate this to Alice with one bit. In this way
Bob and Alice agree on an immediate predecessor G∗, such that g∗(a) = 1
and g∗(b) = 0. The case for OR-gates is dual to this. Now g = g1 + g2,
g1(b) = 0, g2(b) = 0, and at least one of g1(a) and g2(a) is 1. This time
Alice can determine the appropriate predecessor and communicate this to
Bob. This discussion makes it clear that when they reach an input, it cannot
be a constant. If the input is xi, then ai = 1 and bi = 0; for xi, ai = 0 and
bi = 1. In either case Alice and Bob have fulfilled their task.

The proof of the other direction is more complicated, although in a certain
sense it is just a reversal of the proof just given. We start with an optimal
protocol tree for Rf and transform it into a formula for f . Internal vertices at
which Alice sends Bob a bit will become OR-gates and vertices at which Bob
sends Alice a bit will become AND-gates. Leaves of the protocol tree with
the answer i ∈ {1, . . . , n} are replaced by xi or xi. The result is a formula
with the same depth as the protocol tree, but we still need to decide which
of the variables should be negated and to show that the resulting formula
computes f .

Consider a leaf of the protocol tree with label i. From Section 15.2 we
know that the set of inputs (a, b) that reach this leaf forms a rectangle A×B.
For all (a, b) ∈ A × B, ai �= bi. By the rectangle structure, either ai = 1 and
bi = 0 for all a ∈ A and b ∈ B, or ai = 0 and bi = 1 for all a ∈ A and b ∈ B.
Once again we see how useful it is to know that the inputs that reach a vertex
in a protocol tree always form a rectangle. In the first case the leaf is labeled
with xi and in the second case with xi. This completes the description of the
formula.

To show that this formula computes f , we will actually prove a stronger
result. For each vertex v of the formula, let Av ×Bv be the rectangle of inputs
(a, b) that reach v. We will show that if gv is the function computed at v,
then gv(a) = 1 for a ∈ Av, and gv(b) = 0 for b ∈ Bv. The rectangle at the
root r is f−1(1)× f−1(0), so this will prove that gr(a) = 1 for a ∈ f−1(1) and
gr(b) = 0 for b ∈ f−1(0), so gr = f .

The claim is proven by structural induction from the leaves of the formula
to the root. At the leaves, the claim is true since we selected the literal at
each leaf to make this work. Now consider an OR-vertex v and the rectangle
Av × Bv. For the predecessors v1 and v2 we have gv = gv1

+ gv2
. Since Alice

sent a bit to Bob at vertex v, Av1
and Av2

form a partition of Av and Bv =

16.4 The Size of Depth-Bounded Circuits 259

Bv1
= Bv2

. By the inductive hypothesis, for any (a, b) ∈ Av1
×Bv1

, gv1
(a) = 1

and gv1
(b) = 0. This implies that gv(a) = 1. If (a, b) ∈ Av2

× Bv2
, then by

the inductive hypothesis gv2
(a) = 1 and gv2

(b) = 0. From this it follows that
gv(a) = 1. For (a, b) ∈ Av × Bv, a ∈ Av1

or a ∈ Av2
, and thus gv(a) = 1.

Furthermore, b ∈ Bv = Bv1
and b ∈ Bv = Bv2

, so gv(b) = gv1
(b) + gv2

(b) =
0 + 0 = 0. The argument for AND-vertices proceeds analogously, establishing
the theorem. ��

The depth of f in circuits with AND-, OR-, and NOT-gates in which
NOT-gates do not contribute to the depth is equal to the communica-
tion complexity of a certain relation Rf defined from f . Once again we
see the broad applicability of the theory of communication complexity.

The previous statement is valid even though the characterization from
Theorem 16.3.5 has not yet led to any improved results about the depth of
functions. Relations can have multiple correct answers, which makes the task
of Alice and Bob easier but makes proofs of lower bounds more difficult.

Finally, we consider the case of monotone circuits. We will use Dm to
denote the depth of monotone circuits. Of course, the “≥” direction of The-
orem 16.3.5 can be applied to the more restricted case of monotone circuits.
Alice and Bob always reach a non-negated input xi, and ai = 1 and bi = 0.
In fact, they always realize the relation Mf ⊆ f−1(1) × f−1(0) × {1, . . . , n}
that contains all (a, b, i) with ai = 1 and bi = 0. If we start with an optimal
protocol tree for Mf and follow the proof of the “≤” direction, then we obtain
a monotone formula since at the leaves for every (a, b) ∈ A × B, ai = 1 and
bi = 0. So nothing must be changed in the proof that the formula computes
f . Thus we have proven the following result.

Theorem 16.3.6. If f is a non-constant monotone Boolean function, then
Dm(f) = C(Mf). ��

This result has been used to obtain large lower bounds for the depth of
monotone Boolean functions (see, for example, Kushilevitz and Nisan (1997)).

16.4 The Size of Depth-Bounded Circuits

As we discussed in Section 16.2, at the moment we cannot prove superlinear
lower bounds for circuits of explicitly defined functions even if we restrict
the circuits to be of depth O(log n). Depth restrictions of o(log n) are not
meaningful, since then functions that depend essentially on n variables can
no longer be computed. A more reasonable modification, is to allow gates
to have more than two inputs. The number of inputs to a gate in a circuit
is usually referred to as its fan-in. In the simplest model, we allow only
AND- and OR-gates with unbounded fan-in and NOT-gates (which always

260 16 The Complexity of Boolean Functions

have just one input). Since AND and OR are commutative and associative,
the semantics of these large fan-in gates is clear. One could ask at this point
whether it would be better to count edges or to continue to count vertices
as our complexity measure. Since parallel edges between two vertices in this
model can be replaced by a single edge, circuits with s gates can have at most
s · (s + n) edges. And since we are interested in exponential lower bounds, we
can continue to use the number of vertices as our measure of circuit size. If an
OR-gate G has an OR-gate G′ as one of its inputs, then G′ can be replaced
by its inputs. The analogous statement holds for AND-gates. Furthermore,
the size is at most doubled if we push all the negations to the inputs using
DeMorgan’s Laws. Finally, by adding gates with one input we can arrange to
have all edges running from level k′ to k′ + 1. This increases the number of
gates by a factor of at most k if k is the depth of the circuit. The result of
these measures is the following structure for circuits of depth k:

• inputs are x1, . . . , xn, x1, . . . , xn, 0, 1 and form level 0;
• the set of gates can be partitioned into k levels in such a way that all edges

from gates in level k′ go to gates in level k′ + 1;
• all gates in a level are of the same type; and
• the gates on the odd-numbered levels are of a different type from those on

the even-numbered levels.

OR-gates can be expressed as existential quantifiers (there is an input that
has value 1) and AND-gates can be expressed as universal quantifiers. Cir-
cuits of depth k with an OR-gate at level k are therefore called Σk-circuits in
analogy to the class Σk. Similarly, circuits with an AND-gate at level k are
called Πk-circuits. Σ2-circuits are disjunctions of monomials, and circuits in
this form are said to be in disjunctive normal form (DNF). This is confus-
ing, since a normal form is supposed to be uniquely determined, and should
therefore only refer to the disjunction of all minterms. Disjunctive form (DF)
is a better designation, and we will sometimes use this less common term as
well. Analogously, a Π2-circuit corresponds to a conjunction of clauses, or a
conjunctive (normal) form (abbreviated CNF or CF).

We have seen that we can restrict our attention to circuits where the gate
type changes from level to level, i.e., alternates. The class of families f = (fn)
of Boolean functions that have constant-depth polynomially-size circuits is for
this reason denoted AC0 (alternating class).

The parity function PAR = (PARn) is the EXOR of n variables. The
parity function and its negation are the only functions for which every DF
has the maximal number of 2n−1 monomials of length n and every CF has
the maximal number of 2n−1 clauses of length n. Also, since setting some of
the inputs to constants results in another parity function or its negation on
the remaining variables, the parity function is a good candidate for proving
lower bounds. In order to judge the quality of the lower bounds we achieve,
we first prove an upper bound.

16.4 The Size of Depth-Bounded Circuits 261

Theorem 16.4.1. The parity function PARn can be computed by an alter-
nating circuit of depth �(log n)/log log n� + 1 and size O(n2/log n).

Proof. We begin with an EXOR-circuit for which the gates have a fan-in
of �log n�. In order to represent PARn, it is sufficient to build a balanced
formula tree with O(n/log n) gates and depth �(log n)/ log log n�. Now we
replace the EXOR-gates with both disjunctive and conjunctive forms. These
each have size 2�log n�−1 + 1 ≤ n + 1. This increases the size of the circuit to
O(n2/log n) and the depth to 2 · �(log n)/log log n� levels that we imagine as
�(log n)/log log n� layers of depth 2. The negations are again pushed to the
inputs. The inputs of the gates G in the first level of a layer are gates from the
second level of the preceding layer. Because we used both a DF form and a
CF form, these functions are available at both an AND-gate and an OR-gate.
We choose the gate of the same type as G, which means we can combine the
second level of one layer with the first level of the next. In this way the depth
is reduced to �(log n)/log log n� + 1 without increasing the number of gates.

��

The following lower bound for PARn goes back to H̊astad (1989). The
statement that PARn /∈ AC0 had already been proved in some earlier papers
with ever increasing lower bounds, but it was H̊astad’s Switching Lemma that
revealed the core of such lower bounds.

Theorem 16.4.2. Alternating circuits of depth k for PARn with n ≥ 2 require

at least 2	n
1/k/10
 gates. PAR /∈ AC0. Achieving polynomial size requires at

least depth (log n)/(c + log log n) for some constant c.

Proof. The important part here is the lower bound. From this PAR /∈ AC0

and the statement regarding the depth of polynomial-size circuits follow by
simple calculation.

We will prove the lower bound by induction on the depth k of the circuit.
The trick in the inductive proof consists in looking more carefully at the
functions computed at the gates in the second level of the circuit. Either all of
these functions are represented as a DF or all as a CF. By symmetry, it suffices
to consider only the first case. If we replace each DF with an equivalent CF,
then the gates at levels 2 and 3 are all AND-gates and the two levels can be
combined. Then we can apply the inductive hypothesis to the resulting circuit
of depth k − 1.

Of course, the argument is not quite that simple. For the DF x1x2 +
x3x4 + · · · + xn−1xn, for example, every CF contains at least 2n/2 clauses,
each of which has a length of at least n/2. H̊astad applied the probabilistic
method (see, for example, Alon and Spencer (1992)) to a random assignment
of randomly selected variables. The number of variables that are fixed by this
assignment should be chosen so that there are enough variables remaining and
so that with positive probability all of the DFs can be replaced by sufficiently
small CFs. An analysis of this procedure shows that it doesn’t produce the

262 16 The Complexity of Boolean Functions

desired result. So a new parameter s is introduced which measures the largest
number of inputs to a gate in the first level. If s is small, as it is for a DF
for x1x2 + x3x4 + · · · + xn−1xn, then there is hope that long clauses can be
replaced with the constant 1 with sufficiently high probability. These ideas
are formalized in H̊astad’s Switching Lemma.

Lemma 16.4.3 (H̊astad’s Switching Lemma). Let f be a DF over n vari-
ables with monomials of length at most s. Let m > 0 and let g be a random
subfunction generated by the following random experiment. First n − m vari-
ables are selected uniformly at random and then these variables are set to 0
or 1 independently with probability 1/2. The probability that there is no CF
for g with clauses of length at most t is smaller than (5ms/n)t. ��

The technically challenging proof of the Switching Lemma will not be
described here (see Razborov (1995)). We will use the Switching Lemma to
prove the following claim:

• Let S := 2	n
1/k/10
, �n1/k/10 ≥ 1, n(i) := �n/(10 log S)k−i+1, and i ∈

{2, . . . , k + 1}. Then there is no alternating circuit for PARn(i) that has
depth i, at most S gates on the levels 2, . . . , i, and at most log S inputs
for each gate on level 1.

First we will show how the Theorem follows from this claim. If there were an
alternating circuit for PARn with depth k and S gates, then we could replace
this circuit with a circuit of depth k + 1 by computing x1, x1, . . . , xn, xn at
level 1 with gates that each have one input. This circuit computes the function
PARn in depth k+1, has at most S gates on the levels 2, . . . , k+1, and fan-in 1
at each gate at level 1 – a contradiction to the claim for i = k + 1.

The proof of the claim follows by induction on i. For i = 2, the number of
variables is n(2) and

n(2) = �n/(10 log S)k−1

= �(10n log S)/(10 log S)k

≥ 10 log S > log S.

In order to compute PARn(2) in depth 2, we would need gates at level 1 with
n(2) > log S inputs since all prime implicants and all prime clauses have this
length. So the claim holds for i = 2.

For the inductive step we apply the Switching Lemma or its dual for CFs
with m(i) := �n(i)/(10 log S), s := log S, and t := log S. The probability
that a DF or CF cannot be transformed in the desired way into a CF or DF
is smaller than

(5m(i)s/n(i))t ≤ (1/2)log S = 1/S .

So the probability that at least one of the at most S DFs or CFs cannot
be transformed in this way is smaller than 1. This implies that there is an
assignment of n(i) − m(i) of the n(i) variables such that all DFs or CFs at

16.4 The Size of Depth-Bounded Circuits 263

the second level can be transformed in such a way that the second and third
levels can be merged without increasing the number of gates but reducing the
number of levels by 1. This results in an alternating circuit of depth i − 1
that computes either the parity function or its negation on m(i) = n(i − 1)
variables. For the equality m(i) = n(i − 1) we are using the fact that for
integers a, b, and j the equation �a/bj = ��a/bj−1/b holds. The number of
the gates at levels 2, . . . , i− 1 remains bounded by S, and the gates at level 1
have at most log S inputs. This contradiction to the inductive hypothesis
completes the proof of the theorem. ��

If we now allow EXOR-gates with arbitrarily many inputs, then we can
compute more functions with polynomial size since parity only requires one
gate. We can then replace OR-gates with AND- and NOT-gates, and since
x = x ⊕ 1, NOT-gates can be replaced by EXOR-gates. If we have r parallel
edges as inputs to an EXOR-gate, these can be replaced with r mod 2 edges.
In this way we obtain an alternating circuit with AND- and EXOR-levels.
If we think of EXOR as a Z2-sum, then we can extend this idea to Zm-
sums. A MODm-gate outputs the value 1 if and only if the number of 1’s
among the inputs is an integer multiple of m. EXOR-gates are not the same
as MOD2-gates, but we can get a MOD2 from an EXOR-gate by adding a
constant 1 input. For MODm-gates, r inputs that realize the same function
can be replaced by r mod m edges, so again it makes sense to measure the
size of such circuits by counting the number of gates. A MODm-gate counts
modulo m, so the class of all families f = (fn) of Boolean functions that can
be computed by alternating circuits with constant depth and polynomial size
with AND- and MODm-gates is denoted ACC0[m] (alternating counting class).

First we consider the case m = 2, which amounts to computation in the
field Z2. This suggests the application of algebraic methods. Boolean functions
can be interpreted as Z2-polynomials, and therefore have a degree, namely
the degree of this polynomial. It is simple to compute functions with high
degree. For example, we can compute the polynomial x1x2 · · ·xn, which has
maximal degree n, with a single AND-gate. But this polynomial is similar
to a polynomial of very low degree, namely the constant 0 with degree 0 –
similar in the sense that these polynomials only differ on one input. We can
measure the distance between two functions f and g by counting the number
of inputs a such that f(a) �= g(a). Razborov (1987) used this idea to show
that certain explicitly defined functions cannot belong to ACC0[2]. He showed
that ACC0[2] functions must be a small distance from a polynomial of low
degree. To show that a function f = (fn) is not in ACC0[2], it suffices to show
that the distance between f and any polynomial of low degree is large. Of
course this idea must be quantified and parameterized by the depth of the
circuit. Razborov investigated the majority function – MAJ = (MAJn) which
has the value 1 if and only if the input contains at least as many 1’s as 0’s –
and proved the following result.

264 16 The Complexity of Boolean Functions

Theorem 16.4.4. The majority function can be computed by alternating cir-
cuits using AND- and MOD2-gates in O((log n)/log log n) depth and poly-
nomial size, but any such circuit with depth o((log n)/log log n) must have
superpolynomial size. In particular, MAJ /∈ ACC0[2]. ��

Smolensky (1987) investigated the ACC0[m]-classes more generally and proved
the following result.

Theorem 16.4.5. Let p and q be distinct prime numbers and let k be a con-
stant with k ≥ 1. Then MODp �∈ ACC0[qk].

Only primes and power of primes allow an algebraic approach. For numbers
like m = 6 that are the product of at least two distinct primes, it has not
yet been possible to prove that explicitly defined functions cannot belong to
ACC0[m].

16.5 The Size of Depth-Bounded Threshold Circuits

Since PAR /∈ AC0, in Section 16.4 we allowed EXOR-gates and more gen-
eral MODm-gates. Analogously, the result that MAJ /∈ ACC0[2] leads to the
idea of allowing MAJ-gates. In order to capture negation, disjunction, and
conjunction in a single type of gate and to make the availability of constant
inputs unnecessary, we will allow all threshold functions Tn

≥k and all negated
threshold functions Tn

≤k as gates. Recall that these gates check whether there
are at least (or at most) k ones among the inputs to the gate. The resulting
circuits are called threshold circuits and form an adequate model for discrete
neural nets without feedback.

In threshold circuits it can make sense to have parallel edges. The carry
bit (CAR) from the addition of two n bit numbers, for example, can be com-
puted by a threshold gate with exponentially many edges. This is because
CARn(a, b) takes on the value 1 if and only if the following inequality is sat-
isfied: ∑

0≤i≤n−1

ai2
i +

∑
0≤i≤n−1

bi2
i ≥ 2n .

So we can choose the threshold value 2n and use 2i edges from each of ai and
bi to the threshold gate. So we obtain two complexity measures for the size of
threshold circuits, namely

• the number of edges (wires) and
• the number of gates.

If we are only interested in the number of gates, then we can imagine that
the edges carry integer weights and that threshold gates check whether the
weighted sum of the inputs reaches the threshold value. Since it has only been
possible to prove exponential lower bounds for the size of threshold circuits
with very small constant depth, we will use TC0,d to represent the class of the

16.5 The Size of Depth-Bounded Threshold Circuits 265

families f = (fn) of Boolean functions that can be computed by threshold
circuits with polynomially many unweighted edges in depth d. Surprisingly,
the use of weighted edges only allows us to save at most one level (Goldmann
and Karpinski (1993)).

The goal of this section is to show that IP /∈ TC0,2 (Hajnal, Maass, Pudlák,
Szegedy, and Turán (1987)). This is the current limit of our ability to prove
exponential lower bounds. It has not yet been possible to show that there are
any explicitly defined functions that are not in TC0,3. In order to get a feel
for the model, we will begin with two positive results.

Theorem 16.5.1. PAR ∈ TC0,2 and IP ∈ TC0,3.

Proof. The circuit for PARn uses only 2 · �n/2� + 1 gates. For the input
x = (x1, . . . , xn) we put Tn

≥k(x) and Tn
≤k(x) at the first level for each odd

k ≤ n. If x contains an even number of 1’s, then every pair (Tn
≥k(x), Tn

≤k(x))
contains exactly one 1, and so we obtain a 1 at exactly �n/2� of the gates
on level 1. If x has an odd number m of 1’s, then the pair (Tn

≥m(x), Tn
≤m(x))

produces two 1’s, but all other pairs produce one 1 as before. In this case
�n/2� + 1 of the gates on level 1 produce a 1. So we can compute parity
with a threshold gate on level 2 that has every gate on level 1 as input and a
threshold value of �n/2� + 1.

Since IPn(x) is the parity function applied to (x1y1, . . . , xnyn), the preced-
ing result implies that IP ∈ TC0,3. The values x1y1, . . . , xnyn can be computed
on level 1 using T 2

≥2(xi, yi) for 1 ≤ i ≤ n, and the parity function on these
outputs can be computed using two additional levels. ��

We will show that IP /∈ TC0,2 by demonstrating that for any partition-
ing of the input bits of a function f = (fn) with small threshold circuits of
depth 2 between Alice and Bob, there is a shorter randomized communica-
tion protocol with public coins and two-sided error than there can be for IP
(see Theorem 15.4.9). In order to work out this connection to communica-
tion complexity, we consider slightly modified threshold circuits. Instead of
negated threshold gates, we will allow a weight of −1 to be assigned to the
edges. Since the constant 1 is also available to us, and since Tn

≤k = 1−Tn
≥k+1,

we can then replace negated threshold gates without increasing the number
of edges by more than a factor of 2. For the output gate we want to transform
a threshold value of k into a threshold value of 0 and at the same time ensure
that the weighted sum of the inputs never has the value 0. To do this, we first
double all in-coming edges and the threshold value from k to 2k. Since the
weighted sum will then always be even, the threshold value 2k is equivalent to
the threshold value 2k−1. Now if we add 2k−1 inputs to the output gate each
coming from the constant 1 with weight −1, and replace the threshold value
with 0, we obtain a circuit with the same output value as before. Further-
more, the weighted sum of the inputs is always odd, and so never 0. Finally,
we increase the number of inputs to the output gate to the next power of 2
by adding sufficiently many connections to the constant 0. Together this only

266 16 The Complexity of Boolean Functions

increases the size of the circuit by a constant factor. In the following lemma
we will call such circuits modified threshold circuits.

Lemma 16.5.2. If f : {0, 1}n → {0, 1} can be computed by a modified thresh-
old circuit of depth 2 in which every gate has at most M = 2m inputs, then

Rpub

2, 1
2−

1
2M

(f) ≤ m + 2

for every partition of the inputs between Alice and Bob.

Proof. Alice and Bob use the given modified threshold circuit as the basis of
their communication protocol. With their random bits they select a random
input to the output gate. If we denote the inputs to this gate as f1, . . . , fM ,
then f(a) = 1 if and only if w1f1(a) + · · · + wMfM (a) ≥ 0 for the edge
weights wi ∈ {−1, 1}. Alice and Bob want to compute the value fi(a) for
the randomly selected function fi to determine a “tendency” for the weighted
sum. The function fi is a threshold function over at most M inputs and the
inputs are variables. The weighted sum of the inputs takes on one of the M +1
consecutive values −j, . . . , 0, . . . , M − j where j is the number of negatively
weighted inputs. Alice computes the portion of this sum that she can evaluate
because she knows the input bits involved. She then sends this value to Bob
using m+1 bits. Now Bob can evaluate the threshold gate and send the result
to Alice, after which they come to the following decision:

• If fi(a) = 0, they use an additional (public) random bit and select the
result at random, since a value of 0 does not indicate any tendency.

• If fi(a) = 1, then their decision is 1 if wi = 1, and 0 if wi = −1. Here they
are using the tendency indicated by wifi(a).

This protocol has length m + 2. Now we estimate the error-probability for
the input a. Let k be the number of functions fi with fi(a) = 1 and wi = 1,
let l be the number of functions fi with fi(a) = 1 and wi = −1, and let
M − k − l be the number of functions fi with fi(a) = 0. If f(a) = 1, then the
weighted sum of all wifi(a) is positive and so k ≥ l + 1. The probability of a
false decision is given by

1

M

(
l +

1

2
(M − k − l)

)
=

1

2
+

1

2M
(l − k) ≤

1

2
−

1

2M
.

For f(a) = 0, l ≥ k + 1 and the result follows analogously. ��

Theorem 16.5.3. For any constant α < 1/4 and a sufficiently large n,
threshold circuits of depth 2 for IPn require at least 2αn edges. In particu-
lar, IP /∈ TC0,2.

Proof. If 2αn edges suffice to compute the inner product with threshold cir-
cuits of depth 2, then for some constant c, 2αn+c edges suffice for modified
threshold circuits, and by Lemma 16.5.2

16.6 The Size of Branching Programs 267

Rpub
2,1/2−1/2αn+c+1(IPn) ≤ αn + c + 2 ,

where Alice knows all the a-bits and Bob knows all the b-bits. By Theo-
rem 15.4.9, for this partition of the input

Rpub
2,1/2−1/2αn+c+1(IPn) ≥ n/2 − αn − c − 1 .

For α < 1/4 and sufficiently large n, these bounds contradict each other,
proving the theorem. ��

Among the current challenges in the area of circuit complexity are the
following problems:
• Show that explicitly defined Boolean functions cannot be computed

by circuits with linear size and logarithmic depth.
• Show that the formula size for explicitly defined Boolean functions

grows faster than n2/log n.
• Show that explicitly defined Boolean functions do not belong to

ACC0[6].
• Show that explicitly defined Boolean functions do not belong to

TC0,3.

16.6 The Size of Branching Programs

Branching programs were motivated and defined in Section 14.4. The largest
known lower bound for the branching program size of explicitly defined
Boolean functions is based on the same ideas as the largest bound for for-
mula size (see Section 16.3). As in Theorem 16.3.2, for f : {0, 1}n → {0, 1},
let X = {x1, . . . , xn} represent the set of input variables, let S1, . . . , Sk be
disjoint subsets of X, and let si be the number of different subfunctions of f
on Si that can be obtained by replacing all variables in X−Si with constants.

Theorem 16.6.1. For disjoint sets S1, . . . , Sk of variables on which f de-
pends essentially,

BP(f) = Ω
(∑

1≤i≤k,si≥3

(log si)/log log si

)
.

Proof. Let G be a branching program of minimal size for f and let ti be the
number of internal vertices of G that are marked with variables from Si. It
suffices to prove that for si ≥ 3

ti = Ω((log si)/log log si) .

Since f depends essentially on all variables in Si, ti ≥ |Si|. On the other
hand, each of the si subfunctions of f on Si can be realized by a branching
program of size ti+2 since if we replace all variables X−Si with constants, then

268 16 The Complexity of Boolean Functions

the edges entering the vertices marked with these variables can be replaced
with edges to the appropriate successor.

So we are interested in estimating the number of different functions that
can be realized by a branching program with ti internal vertices on |Si| vari-
ables. For the internal vertices there are |Si|

ti different combinations of vari-
able assignments. For the jth vertex there are for each out-going edge ti+2−j
possible successor vertices. So the number we are interested in is at most
|Si|

ti((ti + 1)!)2. This number is not allowed to be smaller than si. From the
inequality |Si| ≤ ti we obtain

si ≤ tti
i ((ti + 1)!)2 = t

O(ti)
i .

From this it follows that ti = Ω((log si)/log log si) for si ≥ 3. ��

Theorem 16.6.2. BP(ISAn) = Ω(n2/log2 n).

Proof. We can make use of the analysis of ISAn from the proof of The-
orem 16.3.3. We obtain Ω(n/log n) Si-sets, for which log si = Ω(n) and
therefore (log si)/log log si = Ω(n/log n). The bound now follows from Theo-
rem 16.6.1. ��

While there are not many methods for proving large lower bounds for
the size of general branching programs for explicitly defined functions, the
situation is better for length-bounded branching programs. We will investigate
how a small branching program G for f leads to a communication protocol for
f and a partition (a, b) of the variables between Alice and Bob. Alice and Bob
agree on a numbering of the vertices in G and divide up the vertices between
them. Variables for which Alice knows the value are called A-vertices, and
the other internal vertices are B-vertices. By symmetry we can assume that
the evaluation of f begins at an A-vertex. Alice follows the computation for
the current input until she comes to a B-vertex or a sink. She then sends
the number of this vertex to Bob. If this vertex was a sink, then both parties
know f(a, b) and have accomplished their task. Otherwise, Bob continues the
computation until reaching an A-vertex or a sink, at which point he sends
the number of this vertex to Alice. Alice and Bob continue in this fashion
until the number of a sink is communicated. With respect to the partition
of the input between Alice and Bob, we define the layer depth ld(G) as the
maximal number of messages in the protocol just described. Analogously we
could have broken the computation into A-sections and B-sections and defined
ld(G) as the maximal number of such sections along a computation path.
These considerations lead to the following result about the communication
complexity C(f), where |G| denotes the number of vertices in G.

Lemma 16.6.3. C(f) ≤ ld(G) · �log |G|�. ��

16.6 The Size of Branching Programs 269

From this lemma we obtain the following inequality:

|G| ≥ 2C(f)/ ld(G)−1 .

In Chapter 15 we encountered functions fn defined on n variables with
C(fn) = Θ(n). In the case of general branching programs, however, we can-
not rule out the possibility that ld(G) = Ω(n). The lower bound then becomes
useless. For this reason we consider the following restricted variant of branch-
ing programs.

Definition 16.6.4. Let X = {x1, . . . , xn} be the variable set under consid-
eration. For s ∈ Xm, an s-oblivious branching program consists of m + 1
levels such that for 1 ≤ i ≤ m each vertex in level i is labeled with si, level
m+1 contains sinks, and all edges run from level i to some level j with j > i.
For a k-indexed BDD (k-IBDD), s is a concatenation of k permutations of
X. For a k-ordered BDD (k-OBDD), s is a concatenation of k copies of one
permutation of X.

With oblivious branching programs we can hope that the variables can be
divided between Alice and Bob in such a way that the layer depth remains
small. The restricted branching programs that we just introduced, especially
the 1-OBDDs (which we will abbreviate OBDDs) have practical importance
as a data structure for Boolean functions. OBDDs with a fixed permutation of
variables (also called a variable ordering) are the most common data structure
for Boolean functions and support many operations on Boolean functions (see,
for example, Wegener (2000)). This data structure is of limited practical value,
however, if the functions being considered do not have small representations.
This motivates the study of lower bounds for the size of these branching
programs and selected functions. We will restrict our attention to the mask
variant EQ∗

n of the equality test and to the computation of the middle bit
of multiplication MULn. Recall that the communication complexity of EQ∗

n

is at least m if Alice knows m of the a-variables and Bob knows m of the
b-variables, or vice versa. The communication complexity of MULn is at least
�m/8�, if Alice and Bob each know m variables of one of the factors.

For the investigation of k-OBDDs, we give Alice an initial segment of the
variables (with respect to the variable ordering), and give the rest to Bob.
This bounds the layer depth by 2k. For EQ∗

n the initial segment ends when
for the first time �n/2� a-variables or �n/2� b-variables are in the segment.
For MULn, we divide up the variables in such a way that Alice receives �n/2�
and Bob �n/2 of the variables of the first factor. This leads to the following
lower bounds.

Theorem 16.6.5. The size of k-OBDDs that compute EQ∗
n or MULn is

2Ω(n/k). ��

For k-IBDDs and s-oblivious branching programs we can only guarantee
a small layer depth for small variable sets A, B ⊆ X. This leads to good

270 16 The Complexity of Boolean Functions

lower bounds for the representation size of f if there is an assignment for the
variables outside of A ∪ B such that the communication complexity of the
resulting subfunction for the variable partition (A, B) is large. The functions
EQ∗

n and MULn have this property.
For k-IBDDs, we start with two disjoint variable sets A and B, i.e., a

partition of the variables between Alice and Bob. We consider the first variable
ordering as a list and put a dividing line after we have seen for the first time
either �|A|/2� A-variables or �|B|/2� B-variables at the beginning of the list.
In the first case �|A|/2� A-variables before the dividing line and the at least
�|B|/2� B-variables after the dividing line survive. The other case is analogous,
and in either case only the surviving variables are considered from this point.
This procedure always results in at least �|A|/2k� surviving A-variables and
�|B|/2k� surviving B-variables. With respect to these variables the layer depth
is at most 2k. It can even happen that the layer depth is less, since A- or B-
layers can be next to each other. For EQ∗

n we start by selecting the set of all
a-variables for A and the set of all b-variables for B. For MULn we can divide
up the variables of the first factor uniformly between A and B.

Theorem 16.6.6. The size of k-IBDDs that represent EQ∗
n or MULn is at

least 2Ω(n/(k·2k)). ��

Theorem 16.6.6 only leads to superpolynomial lower bounds for k =
o((log n)/log log n). In the general case of k-oblivious branching programs,
let m = 4kn for EQ∗

n and let m = 2kn for MULn. Then each variable oc-
curs in s on average k times. Note that the variables can occur with different
frequencies and do not necessarily occur exactly once in certain blocks. This
situation requires subtler combinatoric methods to show that there are not
small sets A and B for which the layer depth is small. For the functions

EQ∗
n and MULn one can show a lower bound of 2Ω(n/(k3·24k)) for the size of

s-oblivious branching programs with m = 4kn (EQ∗
n) or m = 2kn (MULn).

The lower bound methods discussed here can also be applied to nonde-
terministic branching programs. Nondeterministic branching programs are al-
lowed to have arbitrarily many 0- and 1-edges at each internal vertex. For
each input a there are then w(a) computation paths that lead to sinks. The
output for OR-nondeterminism is 1 if and only if at least one of these paths
ends at a 1-sink; for AND-nondeterminism all of the paths must end at a
1-sink, and for EXOR-nondeterminism there must be an even number of such
paths. Lemma 16.6.3 can be generalized to all three kinds of nondetermin-
ism. In the communication protocol, Alice and Bob can nondeterministically
select a portion of the computation path within the appropriate layer. This
results in the same lower bounds for MULn for all three types of nondetermin-
ism. For EQ∗

n the result generalizes only for OR- and EXOR-nondeterminism.
Lower bounds on nondeterministic communication complexity were given in
Theorem 15.3.5.

Lower bounds for general, length-bounded, but not necessarily oblivious
branching programs can only be proven with methods from outside the theory

16.7 Reduction Notions 271

of communication complexity. The methods applied are more complicated and
can be seen as a generalization of communication complexity (see, for example,
Beame, Saks, Sun, and Vee (2003)). In particular, generalized rectangles play
a central role in these investigations.

16.7 Reduction Notions

So far we have emphasized the development of methods for proving lower
bounds and applied these methods only on a few example functions. With the
help of suitable reduction concepts, we can extend these results to many more
functions. In this section we will introduce these reduction concepts and give
a few examples of how they are used. We will consider families f = (fn) of
functions such that fn : {0, 1}p(n) → {0, 1}q(n) for two polynomially bounded
functions p and q. Since we again consider polynomial size to be efficiently
computable, fn may have p(n) inputs. In most cases, p(n) will grow linearly.
By considering more than one output (q(n) > 1) we can treat functions like
multiplication in their entirety. All of the reductions we are about to introduce
will have the property that f = (fn) is reducible to g = (gn) if fn can be
efficiently represented using gm-gates. Depending on the purpose at hand, we
need to decide how to fairly measure the costs of using these gm-gates.

To make the following definitions more understandable we first introduce
the complexity class NC1 (Nick’s class, named after Nick Pippenger). NC1

contains all families f = (fn) of Boolean functions that can be computed by
circuits using arbitrary gates with fan-in 2 in logarithmic depth (and therefore
in polynomial size).

Definition 16.7.1. A family of functions f = (fn) is a projection of g =
(gn) (denoted f ≤proj g) if for some polynomially bounded function r the bits
of fn(x1, . . . , xp(n)) are realized at specified outputs of gr(n)(y1, . . . , yp′(r(n))),
where for each 1 ≤ i ≤ p′(r(n)), yi ∈ {0, 1, x1, x1, . . . , xp(n), xp(n)}. If for each
j ∈ {1, . . . , p(n)} there is at most one i with yi ∈ {xj , xj}, then the projection
is a read-once projection (denoted f ≤rop g).

Definition 16.7.2. A family of functions f = (fn) is AC0-reducible to g =
(gn) (constant depth reducible, denoted f ≤cd g) if there are polynomial-size,
constant-depth circuits for fn that are allowed to use AND- and OR-gates
with unbounded fan-in, NOT-gates, and gm-gates. Each gm-gate is considered
to contribute m to the value of the size of such a circuit.

Definition 16.7.3. A family of functions f = (fn) is NC1-reducible to g =
(gn) (denoted f ≤1 g) if there are polynomial-size circuits of logarithmic depth
for fn using gates with fan-in two and gm-gates. Each gm-gate is considered
to contribute �log m� to the depth and m to the size of such a circuit.

272 16 The Complexity of Boolean Functions

As always, we want our reductions to be transitive, and this can be easily
shown for all four of these reductions. Furthermore, these reductions can be
ordered as follows:

f ≤rop g ⇒ f ≤proj g ⇒ f ≤cd g ⇒ f ≤1 g .

Once again we omit the easy proofs.
How can we make use of these reducibilities? Projections make our life easy.

In circuits or formulas for gr(n), the variables can simply be replaced according
to the specifications of the projection. The result is a circuit or a formula
for fn. This shows that C(fn) ≤ C(gr(n)), L(fn) ≤ L(gr(n)), and D(fn) ≤
D(gr(n)). A monotone projection is not allowed to use the negated variables
x1, . . . , xp(n). If we use only monotone projections, then the inequalities above
hold for monotone circuits and formulas as well.

In a branching program for gr(n) we can replace the variables at the internal
vertices according to the specifications of the projection. An xj-vertex becomes
an xj-vertex if we change the labeling on the out-going edges. An internal
vertex with label 0 can be removed; all edges entering such a vertex can be
routed directly to its 0-child. The same is true for the label 1. From oblivious
branching programs we obtain oblivious branching programs, and the number
of levels cannot increase. However, if we start with k-OBDDs or k-IBDDs, we
are only guaranteed to end up with k-OBDDs or k-IBDDs if the projections
are read-once. This is the reason for introducing ≤rop-reductions.

In order to describe the application of the other two reducibilities, we
introduce the complexity classes ACk and NCk. The class ACk contains all
families f = (fn) of Boolean functions that can be computed by polynomial-
size alternating circuits of depth O(logk n). With the interpretation log0(n) =
1 this is a canonical generalization of the class AC0. The class NCk contains all
families f = (fn) of Boolean functions that can be computed by polynomial-
size circuits of depth O(logk n) using arbitrary gates of fan-in 2. The following
properties can be easily proved:

• g ∈ ACk and f ≤cd g ⇒ f ∈ ACk;
• g ∈ NCk and f ≤1 g ⇒ f ∈ NCk.

So these reductions have the desired and expected properties. Now we will
look at some specific reductions.

In Theorem 13.6.3 we showed that the circuit value problem CVP is
P-complete. An instance of CVP consists of a circuit C and an input a of
the appropriate length for C. The task is to evaluate C on input a. Since
CVP ∈ P, CVP ∈ P/poly. If f = (fn) ∈ P/poly – and therefore computable by
polynomial-size circuits C = (Cn) – then f ≤rop CVP: For fn we select the
description of Cn, which consists of constants, and consider the evaluation of
the circuit Cn on an input a for fn. The result is fn(a), since Cn computes
the function fn. Thus we have shown the following result.

Theorem 16.7.4. CVP is ≤rop-complete for P/poly. ��

16.7 Reduction Notions 273

We conclude with the consideration of several frequently used functions,
namely the parity function PAR, the inner product function IP, the majority
function MAJ, the multiplication function MUL (here considered to output all
of the bits of the product), the sum of n n-bit numbers MADD (multiple ad-
dition), the squaring function SQU, the computation of the n most significant
bits of the reciprocal of an n-bit number INV (inverse), and the computation
of the n most significant bits of the quotient of two n-bit numbers DIV.

Theorem 16.7.5.

• PAR ≤rop IP ≤rop MUL ≤rop SQU ≤rop INV ≤rop DIV,

• MAJ ≤rop MUL,

• MADD ≤rop MUL,

• SQU ≤proj MUL, and

• MUL ≤cd MADD.

Proof. PAR ≤rop IP follows from the fact that PARn(x) = IPn(x, 1n), where
1n denotes the vector consisting of n 1’s.

The proofs that IP ≤rop MUL, MAJ ≤rop MUL, and MADD ≤rop MUL
are all based on the same basic idea. When we multiply x and y, the sum of all
xiyk−i has the place value 2k. This sum doesn’t appear in its pure form in the
product, since there may be carries from earlier positions and because carries
from position k are combined with the sums for positions k + 1, k + 2,
However, if we separate the important positions in x and y by sufficiently
many 0’s, then we can avoid these “overlap effects”. We know that the sum
of all xiyi for 1 ≤ i ≤ n has a bit length of k = �log(n + 1)�. Therefore,
MULn+(n−1)(k−1)(x

′, y′) with x′ = (xn−1, 0
k−1, xn−2, 0

k−1, . . . , x1, 0
k−1, x0)

and y′ = (y0, 0
k−1, y1, . . . , 0

k−1, yn−1) takes on the value of IPn(x, y).

IP3

0 x1 0 x0 * y0 0 y1 0 y2x2

0 0

0 0

0 0

x2y0 x1y0 x0y0

x2y1 x1y1 x0y1

x2y2 x1y2 x0y2

Fig. 16.7.1. An illustration of the projection IP ≤proj MUL.

To prove that MAJ ≤rop MUL we increase the number of inputs to MAJ
by adding constant inputs until the number of inputs is the next larger number
of the form 2k − 1. We do this in such a way that the majority value is not

274 16 The Complexity of Boolean Functions

changed, namely by choosing an equal number of 0’s and 1’s if possible, else
one more 1 than 0. Now if we multiply the new input x by y and separate the
numbers with 0’s as in the proof that IP ≤rop MUL, and set all the yj to 1,
then the resulting product is the binary representation of the sum of all xi.
Since we have m = 2k − 1 bits, the most significant bit of the sum indicates
the majority value. For the proof that MADD ≤rop MUL we need to get the
binary representation of the sum of all xi where this time each xi is itself an
n-bit number. This sum has a bit length of at most n + �log n�, so it suffices
to separate things with �log n� 0’s.

For the proof of MUL ≤rop SQU we consider for factors x and y of bit
length n the number z = (x, 0n+1, y) and claim that MULn(x, y) is contained
in SQU3n+1(z). This is because

〈z〉2 = (〈x〉 · 22n+1 + 〈y〉)2 = 〈x〉2 · 24n+2 + 〈x〉 · 〈y〉 · 22n+2 + 〈y〉2 .

Since 〈y〉2 and 〈x〉 · 〈y〉 have a bit length of 2n, there are no overlaps and
SQU3n+1(z) contains 〈x〉 · 〈y〉.

The most difficult portion of this proof is showing that SQU ≤rop INV.
The basic idea is to make use of the equality

1 + q + q2 + q3 + · · · = 1/(1 − q)

for 0 ≤ q < 1. Here we see that the square of q is one of the summands of the
reciprocal of 1 − q. Ideally we would like to write 1 − q as a projection of q
and again make sure that no undesired overlaps occur when we sum all the
qi’s. Unfortunately this doesn’t quite work, since it is not possible to express
1 − q as a projection of q.

We want to square the number x = (xn−1, . . . , x0). So we form the (10n)-
bit number y with 〈y〉 := 〈x〉 · 2−t + 2−T , t := 4n, and T := 10n. The
extra summand 2−T guarantees that we can write 1 − 〈y〉 as a projection of
〈x〉. Furthermore, 2−T is small enough that it doesn’t produce any undesired
overlaps. Figure 16.7.2 doesn’t use the correct parameters, but is structurally
correct and shows how we get 1 − 〈y〉.

1 = 1 . 0 0 0 0 0 0 0 0 0

〈y〉 = 0 . 0 0 0 x2 x1 x0 0 0 1

1 − 〈y〉 = 0 . 1 1 1 x2 x1 x1 1 1 1

Fig. 16.7.2. The computation of 1 − 〈y〉.

It remains to show that we can find 〈x〉2 in the 10n most significant bits
of Q := 1/(1 − 〈y〉).

16.7 Reduction Notions 275

Q = 1 + 〈y〉 + 〈y〉2 + 〈y〉3 + · · ·

= 1 + (〈x〉 · 2−t + 2−T) + (〈x〉 · 2−t + 2−T)2 + (〈x〉 · 2−t + 2−T)3 + · · ·

= 1 + 〈x〉 · 2−t + 〈x〉2 · 2−2t + remainder.

The remainder can be approximated for n ≥ 2 by

2−10n + 2−12n + 2−20n + 2 · 2−9n < 2−8n .

So the 8n + 1 most significant bits of 1/(1 − 〈y〉) represent the number 1 +
〈x〉 · 2−4n + 〈x〉2 · 2−8n. Since 〈x〉2 ≤ 22n, once again we have no overlaps, and
we find 〈x〉2 in INV10n applied to 1 − 〈y〉.

Let y be an n-bit string such that 〈y〉 = 1, then INVn(x) = DIVn(y, x)
and so INV ≤rop DIV; and SQUn(x) = MULn(x, x) so SQU ≤proj MUL. For
the latter projection each xi-bit is read twice.

The ordinary multiplication procedure taught in grade school requires
computing the product xiyj for all i and j with 0 ≤ i, j ≤ n − 1. For this n2

gates and depth 1 suffice. The “multiplication matrix” shown in Figure 16.7.1
can be interpreted as the addition of n numbers of bit length 2n−1. If we add
n − 1 additional summands each with the value 0, then we can use a single
MADD2n−1-gate to compute MULn(x, y). ��

To estimate the complexity of Boolean functions we begin by devel-
oping methods for proving lower bounds in the various models being
considered. These methods are first applied to simple-looking functions
and then extended to many other functions with the help of suitably
defined reducibilities.

Final Comments

For discrete optimization problems the design of an algorithm in most cases is
a trivial task. The search space – the set of possible solutions – is finite, and it
is possible to go through the elements of the search space, evaluate them, and
then select the optimal solution. But normally the size of the search space
grows exponentially with the length of the problem description, so a brute
force exploration of the search space for all lengths of interest is generally
not practical. Thus the only algorithms that are really of interest are those
that can get by with reasonable amounts of time and storage space. Users
of algorithms might be satisfied with randomized algorithms that work with
a small probability of error or failure, or with algorithms that only produce
nearly optimal results. And often they only require algorithms for special cases
of a more general problem.

Complexity theory is the discipline that tries to discover the border be-
tween problems that are efficiently solvable and those that are not. Complexity
theory must react to new developments in the design of algorithms and deal
with such things as problems with small numbers, approximation problems,
black box problems (where only incomplete information about the input is
available), and problems with fixed input length (as occur, for example, in
the design of hardware).

There are many important problems for which no efficient algorithm is
known, but for which we also have no proof that an efficient algorithm is
impossible. In this rigorous sense, complexity theory has failed. But it has
been largely successful in making statements regarding the relative difficulty
of important problems. Such statements have the following form: “If A is effi-
ciently solvable, then so is B”, or equivalently, “If B is not efficiently solvable,
then neither is A”. Furthermore, it has been possible not only to compare
pairs of problems in this way, but also to compare problems to entire classes
of problems and to compare classes of problems with each other. The theory
of NP-completeness is a milestone of scientific achievement, and new devel-
opments such as probabilistically checkable proofs have built an impressive
structure on this foundation. If one is willing to accept well-founded hypothe-

278 Final Comments

ses, then one obtains a fairly comprehensive view of where the borders for the
design of efficient algorithms lie.

Complexity theory has not only reacted to algorithmic questions but has
also had an independent development. The structural results obtained in this
way can often be applied to gain an even clearer view of the complexity of
specific problems.

If we are only interested in rigorous lower bounds on the resources required
to solve problems – bounds that do not depend on any hypotheses – then the
results are sobering. The situation is somewhat better in the black box scenario
and in situations where we place bounds on some additional resource such as
parallel computation time, or depth, or storage space. Trade-off results reveal
the potential of the methods currently available for lower bounds on resource
requirements.

In summary, complexity theory can be satisfied that it has found at least
partial solutions to all new options for the design of algorithms. Complexity
theory also has a future, since there are central problems that remain unsolved
and since developments in the design of algorithms will continue to raise new
and practically relevant questions.

A

Appendix

A.1 Orders of Magnitude and O-Notation

As was discussed in Chapter 2, the computation time of algorithms is mea-
sured in terms of parameters such as the length of the input. The most com-
monly used measure of computation time is the worst-case computation time
with respect to the unit cost model. Computation times are then functions
t : N → N that increase monotonically. But computation times can only rarely
be computed exactly, and so they are bounded from above and below. In es-
timates like

(
n
2

)
≤ n2/2 functions arise that are no longer integer-valued. For

this reason we will work here with functions f : N → R+.
We want to compare computation times in such a way that “constant

factors don’t matter”. Since its first use by Bachmann in 1892, O-notation
(pronounced “big O”) has established itself as the way to measure the growth
rate, or order of magnitude, of functions f : N → R+, and therefore of com-
putation times.

Our goal is to define the relations “≤”, “≥”, “=”, “<”, and “>” between
functions, but first we will replace the strict definition f ≤ g (namely, f ≤ g
if and only if f(n) ≤ g(n) for all n ∈ N) with a weaker condition:

Definition A.1.1. f = O(g) has the interpretation that asymptotically f
grows no faster than g, and is defined by the condition that f(n)/g(n) is
bounded above by a constant c.

The notation f = O(g) has the disadvantage of suggesting that O(g) = f ,
but this notation is not even defined. It is therefore useful to think of “≤”
when one sees O, so that it becomes clear that these relationships must be
read from left to right and are not reversible. Or one can think of O(g) as the
set of all functions f such that f = O(g). In this case, f ∈ O(g) would be
more suggestive notation. The notation O(f) = O(g) is understood to mean
that whenever h = O(f), then h = O(g). So we interpret

n2 + �n1/2� ≤ n2 + n = O(n2) = O(n3)

280 A Appendix

as follows: n2+n = O(n2), since (n2+n)/n2 ≤ 2. Furthermore, every function
h with h(n)/n2 ≤ c also has the property that h(n)/n3 ≤ c. With such a chain
of “equations”, we may omit the middle part and conclude that n2 + n =
O(n3). Now it is clear why the use of the equality symbol in O-notation has
proved to be so advantageous. Otherwise, the previous relationship would have
to be written as

n2 + �n1/2� ≤ n2 + n ∈ O(n2) ⊆ O(n3) ,

and the mixture of “≤”, “∈”, and “⊆” in one formula is confusing.
The following computation rules for O are useful:

• c · f = O(f) for c ≥ 0,
• c · O(f) = O(f) for c ≥ 0,
• O(f1) + · · · + O(fk) = O(f1 + · · · + fk) = O(max{f1, . . . , fk}) for any

constant k, and
• O(f) · O(g) = O(f · g).

The first two relationships are obvious; the third follows from

c1 · f1(n) + · · · + ck · fk(n) ≤ (c1 + · · · + ck) · (f1(n) + · · · + fk(n))

≤ k · (c1 + · · · + ck) · max{f1(n), . . . , fk(n)} ,

and the fourth from

(c1 · f(n)) · (c2 · g(n)) = (c1 · c2) · f(n) · g(n) .

Once we have expressed “asymptotically ≤” as O, the definitions of
“asymptotically ≥”, and “asymptotically =”, follow in the obvious way:

• f = Ω(g) (read “f is big omega of g”) has the interpretation that f grows
asymptotically at least as fast as g, and is defined by g = O(f).

• f = Θ(g) (read “f is big theta of g”) has the interpretation that asymp-
totically f and g grow at the same rate and is defined by f = O(g) and
g = O(f).

Finally, we come to the definitions of “asymptotically <” and “asymptot-
ically >”:

• f = o(g) (read “f is little o of g”) has the interpretation that asymptoti-
cally f grows more slowly than g and is defined by the condition that the
sequence f(n)/g(n) approaches 0.

• f = ω(g) (read “f is little omega of g”) has the interpretation that asymp-
totically f grows more quickly than g and is defined by g = o(f).

If we were to use the strict definition of f ≤ g, namely that f(n) ≤ g(n)
for all n, then many pairs of functions that are asymptotically comparable
(like n2 and n + 10, for example), would not be comparable. In this case,

A.1 Orders of Magnitude and O-Notation 281

n+10 = O(n2); in fact, n+10 = o(n2). Nevertheless, not all pairs of monotone
functions are asymptotically comparable. Let

f(n) :=

⎧⎨
⎩ n! n even

(n−1)! n odd

and

g(n) :=

⎧⎨
⎩ (n−1)! n even

n! n odd.

Then f and g are monotone increasing, but f(n)/g(n) = n for even n, and
g(n)/f(n) = n for odd n, so neither is bounded above by a constant. Thus
neither f = O(g) nor g = O(f) are true. The runtimes of most algorithms,
however, are asymptotically comparable.

Finally, we want to order the growth rates that typically occur as com-
putation times. The growth rates log log n, log n, n, 2n, and 22n

serve as
a basis. The difference between each successive pair is exponential since
2log log n = log n and 2log n = n. We will use logε n as an abbreviation for
(log n)ε. Then for all constants k > 0 and ε > 0,

(log log n)k = o(logε n),

logk n = o(nε),

nk = o(2nε

),

2nk

= o(22nε

) .

As an example, we will show the second relation. We must show that

limn→∞
(logk n)

nε = 0. It is a simple fact of analysis that for α > 0, limn→∞ an =
0 if and only if limn→∞ aα

n = 0. Let α := 1/k and δ := ε/k. Then we need to
check if limn→∞(log n)/nδ = 0. The functions log n and nδ can be extended
in a canonical way to log x and xδ, functions on R+. By l’Hospital’s rule

lim
x→∞

log x

xδ
= lim

x→∞

d
dx log x

d
dxxδ

(A.1)

= lim
x→∞

x−δ

δ ln 2
(A.2)

and this limit is clearly 0. The other relationships follow in a similar fashion.
From these follow many more relationships, e.g., n log n = o(n2), since log n =
o(n). As an example, we obtain the following sequence of asymptotically ever
faster growing orders of magnitude, where 0 < ε < 1:

282 A Appendix

log log n,

log n, log2 n, log3 n, . . .

nε, n, n log n, n log n log log n, n log2 n, n1+ε, n2, n3, . . .

2nε

, 2εn, 2n,

22n

.

For a sum of constantly many orders of magnitude, one summand of which
grows asymptotically faster than the others, the order of magnitude is that of
this fastest growing summand. So, for example,

n2 log2 n + 10n3/log n + 5n

has the order of magnitude of n3/log n. For summands of the form c ·nα, i.e.,
for polynomials, the order of magnitude is precisely the order of magnitude
of the term with the largest exponent.

Further simplifying, we obtain the following notions: A function f : N →
R+ is called

• logarithmic if f = O(log n);
• polylogarithmic if f = O(logk n) for some k ∈ N, i.e., if asymptotically f

grows no faster than a polynomial in logn;
• linear, quadratic, or cubic if f = O(n), f = O(n2), or f = O(n3);
• quasi-linear if f = O(n logk n) for some k ∈ N;
• polynomially bounded (or sometimes just polynomial) if f = O(nk) for

some k ∈ N;
• superpolynomial if f = Ω(nk) for every k ∈ N, i.e., if f grows faster than

any polynomial;
• subexponential if f = O(2nε

) for every ε > 0;
• exponential if f = Ω(2nε

) for some ε > 0; and
• strictly exponential if f = Ω(2εn) for some ε > 0.

It is important to note in this context that superpolynomial, exponential,
and strictly exponential denote lower bounds while the other terms refer to
upper bounds. So, for example, n2 is cubic (more precisely we could say that
“n2 grows asymptotically no faster than cubic”). If we want to express a lower
bound, we can say that an algorithm requires at least cubic computation time.
Functions like nlog n that are superpolynomial but subexponential are called
quasi-polynomial.

If computation times depend on two or more parameters, we can still use
O-notation. For example, f(n, m) = O(nm2 + n2 log m), if there is a constant
c such that f(n, m)/(nm2 + n2 log m) ≤ c for all n, m ∈ N.

For probabilities p(n), it often matters how fast these converge to 0 or 1.
In the second case, we can consider how fast q(n) := 1− p(n) converges to 0.
By definition p(n) = o(1) if and only if p(n) converges to 0. This is true even

A.2 Results from Probability Theory 283

for functions like 1/ log n and 1/(log log n) which become small “very slowly”.
We will call p(n)

• polynomially small if p(n) = O(n−ε) for some ε > 0;
• exponentially small if p(n) = O(2−nε

) for some ε > 0; and
• strictly exponentially small if p(n) = O(2−εn) for some ε > 0.

The last of these can be expressed as 2−Ω(n), where Ω(n) expresses a lower
bound but 2−Ω(n) expresses an upper bound.

A.2 Results from Probability Theory

Since we view randomization as a key concept, we will need a few results from
probability theory. There are, of course, many textbooks that contain these
results. But since we will consider here only the special cases that we actually
need, we can choose a simpler and more intuitive introduction to probability
theory.

For a random experiment we let S denote the sample space, that is, the set
of all possible outcomes of the experiment. We can restrict ourselves to the
cases where S is either finite (S = {s1, . . . , sm}) or countably infinite (S =
{s1, s2, . . .}). In the first case the corresponding index set is I = {1, . . . , m},
and in the second case I = N. A probability distribution p assigns to each
outcome si for i ∈ I a probability pi ≥ 0. The sum of all the probabilities pi

for i ∈ I must have the value 1.
An event A is a subset of the sample space S, i.e., a set of outcomes

{si : i ∈ IA} for some IA ⊆ I. The probability of an event A is denoted
Prob(A) and is simply the sum of all pi for i ∈ IA. In particular, Prob(∅) = 0
and Prob(S) = 1 for any probability distribution. Important statements con-
cerning the probability of a union of events follow directly from this definition.

Remark A.2.1. A collection of events Aj for j ∈ J is called pairwise disjoint
if Aj ∩ Aj′ = ∅ whenever j �= j′. For pairwise disjoint events Aj we have

Prob

⎛
⎝⋃

j∈J

Aj

⎞
⎠ =

∑
j∈J

Prob(Aj) .

More generally, even if the events Aj are not pairwise disjoint we still have

Prob

⎛
⎝⋃

j∈J

Aj

⎞
⎠ ≤

∑
j∈J

Prob(Aj) .

The following images can be helpful. We can imagine a square with sides
of length 1. Each outcome si is represented as a subregion Ri of the square
with area pi such that the regions are disjoint for distinct outcomes. Area

284 A Appendix

and probability are both measures. Events are now regions of the square, and
the areas of these regions are equal to the sum of the areas of the outcomes
they contain. It is clear that the areas of disjoint events add, and that in the
general case, the sum of the areas forms an upper bound, since there may
be some “overlap” that causes some outcomes to be “double counted”. Our
random experiment is now equivalent to the random selection of a point in
the square. If this point belongs to Ri, then the outcome is si.

What changes if we know that event B has occurred? All outcomes si /∈ B
are now impossible and so have probability 0, while the outcomes si ∈ B
remain possible. So we obtain a new probability distribution q. For si /∈ B,
q(si) = 0. This means that the sum of all qi for si ∈ B must have the value 1.
The relative probabilities of the outcomes si, sj ∈ B should not change just
because we know that B has occurred, so qi/qj = pi/pj . Therefore, for some
constant λ

qi = λpi ,

and ∑
i∈IB

qi = 1 .

From this it follows that

λ =

(∑
i∈IB

qi

)/(∑
i∈IB

pi

)
= 1/Prob(B) .

So we define the conditional probability q by

qi =

⎧⎨
⎩

pi

Prob(B)
if si ∈ B

0 otherwise.

For an event A we obtain

q(A) =
∑
i∈IA

qi =
∑

i∈IA∩IB

pi/Prob(B) =
Prob(A ∩ B)

Prob(B)
.

For the conditional probability that A occurs under the assumption that B
has occurred, the notation Prob(A | B) (read the probability of A given B) is
used. So we have

Prob(A | B) := Prob(A ∩ B)/Prob(B) .

This definition only makes sense when Prob(B) > 0, since condition B can
only occur if Prob(B) > 0. Often the equivalent equation

Prob(A ∩ B) = Prob(A | B) · Prob(B)

A.2 Results from Probability Theory 285

is used. This equation can be used even if Prob(B) = 0. Although Prob(A | B)
is not formally defined in this case, we still interpret Prob(A | B) · Prob(B)
as 0.

If Prob(A | B) = Prob(A), then the probability of the event A does not
depend on whether or not B has occurred. In this case the events A and B are
said to be independent events. This condition is equivalent to Prob(A∩B) =
Prob(A) · Prob(B) and also to Prob(B | A) = Prob(B) if Prob(A) > 0 and
Prob(B) > 0. The equation Prob(A∩B) = Prob(A) ·Prob(B) shows that the
term independence is in fact symmetric with respect to A and B. Events Aj

for j ∈ J are called completely independent if for all J ′ ⊆ J ,

Prob

⎛
⎝⋂

j∈J ′

Aj

⎞
⎠ =

∏
j∈J′

Prob(Aj)

holds.
To this point we have derived conditional probability from the probability

distribution p. Often we will go in the other direction. If we know the proba-
bility distribution of some statistic like income for every state, and we know
the number of residents in each state (or even just the relative populations
of the states), then we can determine the probability distribution for the en-
tire country by taking the weighted sum of the regional probabilities. This
idea can be carried over to probability and leads to the so-called law of total
probability.

Theorem A.2.2. Let Bj (j ∈ J) be a partition of the sample space S. Then

Prob(A) =
∑
j∈J

Prob(A | Bj) · Prob(Bj) .

Proof. The proof follows by simple computation.

Prob(A | Bj) · Prob(Bj) = Prob(A ∩ Bj)

and so by Remark A.2.1 we have∑
j∈J

Prob(A | Bj) · Prob(Bj) =
∑
j∈J

Prob(A ∩ Bj) = Prob
(⋃

j∈J

(A ∩ Bj)
)

= Prob
(
A ∩

⋃
j∈J

Bj

)
= Prob(A) . ��

Now we come to the central notion of a random variable. Formally, this is
simply a function X : S → R. So one random variable on the sample space
of all people could assign to each person his or her height; another random
variable could assign each person his or her weight. But random variables are
more than just functions, since every probability distribution p on the sample
space S induces a probability distribution on the range of X as follows:

286 A Appendix

Prob(X = t) := Prob({si | X(si) = t}) .

So the probability that X takes on the value t is simply the probability of
the set of all outcomes that are mapped to t by X. While we usually can’t
“do calculations” on a sample space, we can with random variables. Before we
introduce the parameters of random variables, we want to derive the defini-
tion of independent random variables from the notion of independent random
events. Two random variables X and Y on the probability space (S, p) (i.e.,
a sample space S and a probability distribution p on that sample space) are
called independent if the events {X ∈ A} := {si | X(si) ∈ A} and {Y ∈ B}
are independent for all A, B ⊆ R. A set of random variables {Xi | i ∈ I} is
called completely independent if the events {Xi ∈ Ai} for i ∈ I are completely
independent for all events Ai ⊆ R. The set of random variables {Xi | i ∈ I}
is pairwise independent if for any events Ai, Aj ⊆ R and any i �= j, the events
{Xi ∈ Ai} and {Xj ∈ Aj} are independent.

The most important parameter of a random variable is its expected value
(or mean value) E(X) defined by

E(X) :=
∑

t∈im(X)

t · Prob(X = t) ,

where im(X) denotes the image of the sample space under the function X.
This definition presents no problems if im(X) is finite (so, in particular, when-
ever S is finite). For countably infinite images the infinite series in the def-
inition above is only defined if the series converges absolutely. This will not
cause us any problems, however, since when we deal with computation times,
the terms of the series will all be positive and we will also allow an expected
value of ∞. Average-case runtime, as defined in Chapter 2, is an expected
value where the input x with |x| = n is chosen randomly. For the expected
runtime of a randomized algorithm the input x is fixed and the expected
value is taken with respect to the random bits that are used by the algorithm.
Since we have defined conditional probability, we can also talk about con-
ditional expected value E(X | A) with respect to the conditional probability
Prob(X = t | A).

Expected value allows for easy computations.

Remark A.2.3. If X is a 0-1 random variable (i.e., im(X) is the set {0, 1}),
then

E(X) = Prob(X = 1) .

Proof. The claim follows directly from the definition:

E(X) = 0 · Prob(X = 0) + 1 · Prob(X = 1) = Prob(X = 1) . ��

This very simple observation is extremely helpful, since it allows us to
switch back and forth between probability and expected value. Furthermore,
expected value is linear. This can be explained simply. If we consider the

A.2 Results from Probability Theory 287

balances in the accounts of a bank’s customers as random variables (based on
a random selection of a customer), and every balance is reduced by a factor of
1.95583 (to convert from German marks to euros), then the average balance
will be reduced by this same factor. (Here we see a difference between theory
and application, since in practice small differences occur due to the rounding
of each balance to the nearest euro cent.) If two banks merge and the two
accounts of each customer (perhaps with a balance of 0 for one or the other
bank) are combined, then the mean balance after the merger will be the sum
of the mean balances of the two banks separately. We will show that this holds
in general for any random variables defined on the same probability space.

Theorem A.2.4. Let X and Y be random variables on the same probability
space. Then

1. E(a · X) = a · E(X) for a ∈ R, and
2. E(X + Y) = E(X) + E(Y).

Proof. Here we use a description of expected value that goes back to the indi-
vidual outcomes of the sample space. Let (S, p) be the underlying probability
space. Then

E(X) =
∑
i∈I

X(si) · pi .

This equation follows from the definition of E(X), since Prob(X = t) is the
sum of all pi with X(si) = t. It follows that

E(a · X) =
∑
i∈I

(a · X)(si) · pi = a
∑
i∈I

X(si) · pi = a · E(X)

and

E(X+Y) =
∑
i∈I

(X+Y)(si) ·pi =
∑
i∈I

X(si) ·pi+
∑
i∈I

Y (si) ·pi = E(X)+E(Y) .

��

On the other hand, it is not in general the case that E(X ·Y) = E(X)·E(Y).
This can be shown by means of a simple example. Let S = {s1, s2}, p1 = p2 =
1/2, X(s1) = 0, X(s2) = 2, and Y = X. Then X ·Y (s1) = 0 and X ·Y (s2) = 4.
It follows that E(X · Y) = 2, but E(X) · E(Y) = 1 · 1 = 1. The reason is that
in our example X and Y are not independent.

Theorem A.2.5. If X and Y are independent random variables on the same
sample space, then

E(X · Y) = E(X) · E(Y) .

Proof. As in the proof of Theorem A.2.4, we have

E(X · Y) =
∑
i∈I

X(si) · Y (si) · pi .

288 A Appendix

We partition I into disjoint sets I(t, u) := {i | X(si) = t, Y (si) = u}. From
this it follows that

E(X · Y) =
∑
t,u

∑
i∈I(t,u)

t · u · pi =
∑
t,u

t · u
∑

i∈I(t,u)

pi

=
∑
t,u

t · u · Prob(X = t, Y = u).

Now we can take advantage of the independence of X and Y and obtain

E(X · Y) =
∑
t,u

t · u · Prob(X = t) · Prob(Y = u)

=
(∑

t

t · Prob(X = t)
)
·
(∑

u

u · Prob(Y = u)
)

= E(X) · E(Y).

��

The claim of Theorem A.2.5 can be illustrated as follows. If we assume
that weight and account balance are independent, then the mean balance is
the same for every weight, and so the mean product of account balance and
weight is the product of the mean account balance and the mean weight.
This example also shows that data from everyday life typically only lead to
“almost independent” random variables. But we can design experiments with
coin tosses so that the results are “genuinely independent”.

The expected value reduces the random variable to its weighted mean, and
so expresses only a portion of the information contained in a random variable
and its probability distribution. The mean annual income in two countries
can be the same, for example, while the income disparity in one country
may be small and in the other country much larger. So we are interested
in the random variable Y = |X − E(X)|, which measures the distance of a
random variable from its expected value. The kth central moment of X is
E(|X − E(X)|k). The larger k is the more heavily larger deviations from the
mean are weighted. Based on the discussion above, we might expected that the
first central moment would be the most important, but it is computationally
inconvenient because the function |X| is not differentiable. As a standard
measure of deviation from the expected value, the second central moment is
usually used. It is called the variance of the random variable X and denoted
by V (X) := E((X − E(X))2). Since X2 = |X|2, we can drop the absolute
value. Directly from the definition we obtain the following results.

Theorem A.2.6. Let X be a random variable such that |E(X)| < ∞, then

V (X) = E(X2) − E(X)2

and for any a ∈ R,
V (aX) = a2 · V (X) .

A.2 Results from Probability Theory 289

Proof. The condition |E(X)| < ∞ guarantees that on the right side of the
first claim we do not have the undefined quantity ∞−∞. Then, since E(X)
is a constant factor, by linearity of expected value we have

V (X) = E((X − E(X))2) = E(X2 − 2 · X · E(X) + E(X)2)

= E(X2) − 2 · E(X) · E(X) + E(E(X)2).

Finally, for each constant a ∈ R, E(a) = a, since we are dealing with a
“random” variable that always takes on the value a. So E(E(X)2) = E(X)2

and we obtain the first claim.
For the second claim we apply the first statement and use the equations

E((aX)2) = a2 · E(X2) and E(aX)2 = a2 · E(X)2. ��

Since V (2 ·X) = 4 ·V (X) and not 2 ·V (X), it is not generally the case that
V (X +Y) = V (X)+V (Y). This is the case, however, if the random variables
are independent.

Theorem A.2.7. For pairwise independent random variables X1, . . . , Xn we
have

V (X1 + · · · + Xn) = V (X1) + · · · + V (Xn) .

Proof. The statement follows by simple computation. We have

V
(∑

1≤i≤n

Xi

)
= E

((∑
1≤i≤n

Xi − E
(∑

1≤i≤n

Xi

))2
)

= E

((∑
1≤i≤n

Xi −
∑

1≤i≤n

E(Xi)
)2
)

= E
(∑

1≤i,j≤n

Xi · Xj − 2
∑

1≤i,j≤n

Xi · E(Xj) +
∑

1≤i,j≤n

E(Xi) · E(Xj)
)

=
∑

1≤i,j≤n

(
E(Xi · Xj) − 2 · E(Xi) · E(Xj) + E(Xi) · E(Xj)

)
.

By Theorem A.2.5 it follows from the independence of Xi and Xj , that
E(Xi · Xj) = E(Xi) · E(Xj), and so the summands for all i �= j equal 0. For
i = j we obtain E(X2

i) − E(Xi)
2 and thus V (Xi). This proves the theorem.

��

The law of total probability can be extended to a statement about condi-
tional expected value. Recall that E(X | A) is the expected value of X with
respect to the probability distribution Prob(· | A).

Theorem A.2.8. Let {Bj | j ∈ J} be a partition of the sample space S, and
let X be a random variable. Then

E(X) =
∑
j∈J

E(X | Bj) · Prob(Bj) .

290 A Appendix

Proof. From the definitions we have

E(X) =
∑
i∈I

X(si) · p(si)

and

E(X | Bj) · Prob(Bj) =
∑
i∈I

X(si) · Prob(si | Bj) · Prob(Bj)

=
∑
i∈I

X(si) · Prob({si} ∩ Bj).

Since the sets Bj form a partition of the sample space, si is in exactly one of
these sets, so ∑

j∈J

Prob({si} ∩ Bj) = p(si) .

So ∑
j∈J

E(X | Bj) · Prob(Bj) =
∑
j∈J

∑
i∈I

X(si) · Prob({si} ∩ Bj)

=
∑
i∈I

⎛
⎝X(si) ·

∑
j∈J

Prob({si} ∩ Bj)

⎞
⎠

=
∑
i∈I

X(si) · p(si)

= E(X) .

��

This statement is not surprising. If we want to measure the mean weight
of residents of a certain country, we can do this for each of several regions
separately and then form a weighted sum, using the population proportions
of the regions as weights.

Finally, we need a statement with which we can prove that the probability
of “large” deviations from the expected value is “small”. One very simple but
extremely useful statement that makes this possible is the Markov Inequality.
If we know that the mean annual income of a population is 40000 euros, then
we can conclude from this that at most 4% of the population has an annual
income that exceeds one million euros. For this to be the case we must make
the assumption that there are no negative incomes. If more than 4% of the
population earns at least one million euros, then these people alone contribute
more than 0.04 · 106 = 40000 to the weighted mean. Since we have excluded
the possibility of negative incomes, the mean income must be greater than
40000 euros. The Markov Inequality is a generalization of this result.

Theorem A.2.9 (Markov Inequality). Let X ≥ 0. Then for all t > 0,

Prob(X ≥ t) ≤ E(X)/t .

A.2 Results from Probability Theory 291

Proof. We define a random variable Y on the same sample space that X is
defined on as follows:

Y (si) :=

⎧⎨
⎩ t if X(si) ≥ t

0 otherwise.

By definition Y (si) ≤ X(si) for all i and therefore Y ≤ X. By the definition
of expected value this implies that E(Y) ≤ E(X). Similarly, it follows from
the definitions of expected value and of Y that

E(Y) = 0 · Prob(X < t) + t · Prob(X ≥ t)

= t · Prob(X ≥ t).

Putting these together we have

E(X) ≥ E(Y) = t · Prob(X ≥ t) . ��

It is not so impressive that the Markov Inequality implies that at most 4%
of the population can have an annual income in excess of one million euros.
We suspect that the actual portion is much less. We obtain better estimates if
we apply the Markov Inequality to specially chosen random variables. Using
the random variable |X − E(X)|k, for example, we obtain

Prob
(
|X − E(X)|k ≥ tk

)
≤ E

(
|X − E(X)|k

)
/tk ,

or since |X − E(X)|k ≥ tk and |X − E(X)| ≥ t are equivalent,

Prob (|X − E(X)| ≥ t) ≤ E
(
|X − E(X)|k

)
/tk .

When computing E
(
|X − E(X)|k

)
, as k increases, values of the random vari-

ables |X − E(X)| that are smaller than 1 are weighted less heavily, and values
that are greater than 1 are weighted more heavily. It is also worth noting that
the denominator tk changes with k. So it is very possible that we will achieve
better results with larger values of k. For the case k = 2, the result is known
as the Chebychev Inequality.

Corollary A.2.10 (Chebychev Inequality). For all t > 0,

Prob (|X − E(X)| ≥ t) ≤ V (X)/t2 . ��

We now consider n independent coin tosses and want to investigate the
random variable that counts the number of heads. Let X1, . . . , Xn be random
variables with Prob(Xi = 0) = Prob(Xi = 1) = 1/2. Then Xi measures
the number of successes (tosses that result in heads) in the ith coin toss
and X := X1 + · · · + Xn measures the total number of successes. Note that
X2

i = Xi. By Remark A.2.3, E(X2
i) = E(Xi) = 1/2, and by Theorem A.2.6,

V (Xi) = 1/2− (1/2)2 = 1/4. By Theorem A.2.4 and Theorem A.2.7, E(X) =
n/2 and V (X) = n/4. Our goal is to show that for any constant ε > 0,

292 A Appendix

Prob(X ≥ (1 + ε) · E(X)) becomes very small as n increases. The Markov
Inequality only provides the following estimate

Prob (X ≥ (1 + ε) · E(X)) ≤ 1/(1 + ε) ,

which is independent of n. With the Chebychev Inequality we obtain

Prob (X ≥ (1 + ε) · E(X)) = Prob (X − E(X) ≥ ε · E(X))

≤ Prob (|X − E(X)| ≥ ε · E(X))

≤ V (X)/
(
ε2 · E(X)2

)
= ε−2 · n−1 .

So the probability we are considering is polynomially small. The Chernoff
Inequality, which we will derive shortly, will show that the probability is in
fact strictly exponential small. The Chernoff Inequality also follows from the
Markov Inequality. While for the Chebychev Inequality random variables were
squared, or more generally the kth power Y k was considered, for the Chernoff
Inequality we will consider the random variable e−Y . The stronger curvature
of the exponential function as compared to polynomials makes a significantly
better estimate possible, but only for certain random variables.

Theorem A.2.11 (Chernoff Inequality). Suppose 0 < p < 1 and X =
X1 + · · · + Xn for independent random variables X1, . . . , Xn with Prob(Xi =
1) = p and Prob(Xi = 0) = 1 − p. Then E(X) = np and for all δ ∈ (0, 1) we
have

Prob (X ≤ (1 − δ) · E(X)) ≤ e−E(X)δ2/2 .

Proof. The statement about E(X) follows from the linearity of expected value
and E(Xi) = p (Remark A.2.3).

A number t > 0 will be chosen later in the proof. Since the function
x → e−tx is strictly monotonically decreasing, X ≤ (1−δ) ·E(X) is equivalent
to e−tX ≥ e−t(1−δ) E(X). So by the Markov Inequality we have

Prob (X ≤ (1 − δ) · E(X)) = Prob
(
e−tX ≥ e−t(1−δ) E(X)

)
≤ E

(
e−tX

)
/e−t(1−δ) E(X).

Now we compute E(e−tX). Since X1, . . . , Xn are independent, this is the ran-
dom variables e−tX1 , . . . , e−tXn are also independent. Thus

E
(
e−tX

)
= E

(
e−t(X1+···+Xn)

)
= E

(∏
1≤i≤n e−tXi

)
=
∏

1≤i≤n

(
E(e−tXi)

)
.

And since Xi only takes on the values 0 and 1, it follows that

E
(
e−tXi

)
= 1 · (1 − p) + e−t · p

= 1 + p (e−t − 1) .

A.2 Results from Probability Theory 293

It follows that
E
(
e−tX

)
=
(
1 + p(e−t − 1)

)n
.

By a simple result from calculus, 1 + x < ex for all x < 0, and since t > 0,
p (e−t − 1) < 0 and

E
(
e−tX

)
< ep(e−t−1)n = e(e−t−1)·E(X) .

In the last step we took advantage of the fact that E(X) = np. Now we let
t := − ln(1 − δ). Then t > 0 and e−t − 1 = −δ. Thus

E
(
e−tX

)
< e−δ·E(X).

Finally, we substitute this result into our first estimate and obtain

Prob (X ≤ (1 − δ) E(X)) < e−δ·E(X)/e(ln(1−δ))(1−δ) E(X)

= e(−(1−δ) ln(1−δ)−δ) E(X).

From the Taylor series for x lnx it follows that

(1 − δ) ln(1 − δ) > −δ + δ2/2 .

Inserting this leads to the Chernoff Inequality. ��

We return now to our example, where p = 1/2. Then X ≥ (1 + ε) · E(X)
has the same probability as X ≤ (1 − ε) · E(X), since X is symmetrically
distributed about E(X). For a coin toss, we are simply reversing the roles of
the two sides of the coin. Thus

Prob (X ≥ (1 + ε) · E(X)) ≤ e−ε2n/4

is in fact strictly exponential small.
Frequently we encounter the following problem when investigating ran-

domized algorithms. Such an algorithm may proceed in phases. Each phase
has a probability of p of succeeding, in which case we stop the algorithm.
Otherwise a new phase is begun that is completely independent of the pre-
ceding phases. Let X be a random variable that takes on the value t if the first
success occurs in the tth phase. Since the phases are completely independent,

Prob(X = t) = qt−1p ,

where q := 1 − p. That is, outcome X = t is equivalent to the failure of
the first t − 1 phases followed by success in the tth phase. This probability
distribution is known as the geometric distribution. We are interested in the
expected value of this distribution.

294 A Appendix

Theorem A.2.12. Let X be geometrically distributed with parameter p. Then
E(X) = 1/p.

Proof. By definition

E(X) =
∑

1≤k<∞

k · qk−1 · p

= p · (q0

+ q1 + q1

+ q2 + q2 + q2

+ q3 + q3 + q3 + q3

+ · · ·) .

The first column has the value 1/(1− q) = 1/p. Analogously, the value of the
ith column (factor out qi−1) is qi−1/p. So

E(X) = p · 1
p ·
∑

1≤i<∞ qi−1 = 1
p . ��

References

1. Agrawal, M., Kayal, N. and Saxena, N. (2002). PRIMES is in P. Tech.
Report Dept. of Computer Science and Engineering. Indian Inst. of Tech-
nology Kanpur.

2. Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993). Network Flows. The-
ory, Algorithms and Applications. Prentice–Hall.

3. Alon, N. and Boppana, R.B. (1987). The monotone circuit complexity of
Boolean functions. Combinatorica 7, 1–22.

4. Alon, N. and Spencer, J. (1992). The Probabilistic Method. Wiley.
5. Arora, S. (1997). Nearly linear time approximation schemes for Euclidean

TSP and other geometric problems. Proc. of 38th IEEE Symp. on Foun-
dations of Computer Science, 554–563.

6. Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M. (1998).
Proof verification and the hardness of approximation problems. Journal
of the ACM 45, 501–555.

7. Arora, S. and Safra, S. (1998). Probabilistic checking of proofs: A new
charaterization of NP. Journal of the ACM 45, 70–122.

8. Aspvall, B. and Stone, R.E. (1980). Khachiyan’s linear programming al-
gorithm. Journal of Algorithms 1, 1–13.

9. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela,
A. and Protasi, M. (1999). Complexity and Approximation. Springer.

10. Balcázar, J.L., Dı́az, J. and Gabarró, J. (1988). Structural Complexity.
Springer.

11. Beame, P., Saks, M., Sun, X. and Vee, E. (2003). Time-space trade-off
lower bounds for randomized computation of decision problems. Journal
of the ACM 50, 154–195.

12. Bellare, M., Goldreich, O. and Sudan, M. (1998). Free bits, PCP and non-
approximability – towards tight results. SIAM Journal on Computing 27,
804–915.

13. Bernholt, T., Gülich, A., Hofmeister, T., Schmitt, N. and Wegener, I.
(2002). Komplexitätstheorie, effiziente Algorithmen und die Bundesliga.
Informatik–Spektrum 25, 488–502.

296 References

14. Boppana, R. and Halldórsson, M.M. (1992). Approximating maximum
independent sets by excluding subgraphs. BIT 32, 180–196.

15. Clote, P. and Kranakis, E. (2002). Boolean Functions and Computation
Models. Springer.

16. Cook, S.A. (1971). The complexity of theorem proving procedures. Proc.
3rd ACM Symp. on Theory of Computing, 151–158.

17. Dietzfelbinger, M. (2004). Primality Testing in Polynomial Time. LNCS
3000. Springer.

18. Feige, U., Goldwasser, S., Lovász, L., Safra, S. and Szegedy, M. (1991).
Approximating clique is almost NP-complete. Proc. of 32nd IEEE Symp.
on Foundations of Computer Science, 2–12.

19. Garey, M.R. and Johnson, D.B. (1979). Computers and Intractability. A
Guide to the Theory of NP-Completeness. W.H. Freeman.

20. Goldmann, M. and Karpinski, M. (1993). Simulating threshold circuits by
majority circuits. Proc. of the 25th ACM Symp. on Theory of Computing,
551–560.

21. Goldreich, O. (1998). Modern Cryptography, Probabilistic Proofs and
Pseudorandomness. Algorithms and Combinatorics, Vol.17. Springer.

22. Goldwasser, S., Micali, S. and Rackoff, C. (1989). The knowledge complex-
ity of interactive proof-systems. SIAM Journal on Computing 18, 186–208.

23. H̊astad, J. (1989). Almost optimal lower bounds for small depth circuits.
In: Micali, S. (ed.) Randomness and Computation. Advances in Comput-
ing Research 5, 143–170. JAI Press.

24. H̊astad, J. (1999). Clique is hard to approximate within n1−ε. Acta
Mathematica 182, 105–142.

25. H̊astad, J. (2001). Some optimal inapproximability results. Journal of the
ACM 48, 798–859.

26. Hajnal, A., Maass, W., Pudlák, P., Szegedy, M. and Turán, G. (1987).
Threshold circuits of bounded depth. Proc. of 28th IEEE Symp. on Foun-
dations of Computer Science, 99–110.

27. Hemaspaandra, L. and Ogihara, M. (2002). The Complexity Theory Com-
panion. Springer.

28. Homer, S. (2001). Computability and Complexity Theory. Springer.
29. Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2001). Introduction to Au-

tomata Theory, Languages and Computation. Addison-Wesley Longman.
30. Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory,

Languages and Computation. Addison-Wesley.
31. Hromkovič, J. (1997). Communication Complexity and Parallel Comput-

ing. Springer.
32. Johnson, D.S. (1974). Approximation algorithms for combinatorial prob-

lems. Journal of Computer and System Sciences 9, 256–278.
33. Kann, V. and Crescenzi, P. (2000). A list of NP-complete optimization

problems. www.nada.kth.se/∼viggo/index-en.html

References 297

34. Karmarkar, N. and Karp, R.M. (1982). An efficient approximation scheme
for the one-dimensional bin packing problem. Proc. of 23rd IEEE Symp.
on Foundations of Computer Science, 312–320.

35. Karp, R.M. (1972). Reducibility among combinatorial problems. In:
Miller, R.E. and Thatcher, J.W. (eds.). Complexity of Computer Com-
putations, 85–103. Plenum Press.

36. Korte, B. and Schrader, R. (1981). On the existence of fast approximation
schemes. In : Nonlinear Programming. Academic Press.

37. Kushilevitz, E. and Nisan, N. (1997). Communication Complexity. Cam-
bridge University Press.

38. Ladner, R.E. (1975). On the structure of polynomial time reducibility.
Journal of the ACM 22, 155–171.

39. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B.
(1985). The Traveling Salesman Problem. A Guided Tour of Combina-
torial Optimization. Wiley.

40. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B.
(1993). Sequencing and Scheduling: Algorithms and Complexity. In:
Graves, S.C., Rinnooy Kan, A.H.G. and Zipkin, P.H. (eds.). Handbook in
Operations Research and Management Science, Vol. 4, Logistics of Pro-
duction and Inventory, 445–522. North–Holland.

41. Levin, L.A. (1973). Universal sorting problems. Problems of Information
Transmission 9, 265–266.

42. Martello, S. and Toth, P. (1990). Knapsack Problems. Wiley.
43. Mayr, E., Prömel, H.J. and Steger, A. (1998) (eds.). Lectures on Proof

Verification and Approximation Algorithms. LNCS 1367. Springer.
44. Miller, G.L. (1976) Riemann’s hypothesis and tests for primality. Journal

of Computer and System Sciences 13, 300–317.
45. Miltersen, P.B. (2001). Derandomizing complexity classes. In Parda-

los, P.M., Rajasekaran, S., Reif, J. and Rolim, J. (eds.). Handbook of
Randomization. Kluwer.

46. Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. Cam-
bridge University Press.

47. Nechiporuk, É.I. (1966) A Boolean function. Soviet Mathematics Doklady
7, 999–1000.

48. Nielsen, M.A. and Chuang, I.L. (2000). Quantum Computation and Quan-
tum Information. Cambridge University Press.

49. Owen, G. (1995). Game Theory. Academic Press.
50. Papadimitriou, C.M. (1994). Computational Complexity. Addison–Wesley.
51. Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. Prentice–

Hall.
52. Razborov, A.A. (1987). Lower bounds on the size of bounded depth net-

works over a complete basis with logical addition. Math. Notes of the
Academy of Sciences of the USSR 41, 333–338.

298 References

53. Razborov, A.A. (1990). Lower bounds for monotone complexity of Boolean
functions. American Mathematical Society Translations 147, 75–84.

54. Razborov, A.A. (1995). Bounded arithmetics and lower bounds in Boolean
complexity. In: Clote, P. and Remmel, J. (eds.). Feasible Mathematics II.
Birkhäuser.

55. Schönhage, A., Grotefeld, A.F.W. and Vetter, E. (1999). Fast Algorithms:
A Multitape Turing Machine Implementation. Spektrum Akademischer
Verlag.

56. Shamir, A. (1992). IP=PSPACE. Journal of the ACM 39, 869–877.
57. Shasha, D. and Lazere, C. (1998). Out of Their Minds. The Lives and

Discoveries of 15 Great Computer Scientists. Copernicus (Springer).
58. Singh, S. (1998). Fermat’s Last Theorem. Fourth Estate.
59. Sipser, M. (1997). Introduction to the Theory of Computation. PWS Pub-

lishing Company.
60. Smolensky, R. (1987). Algebraic methods in the theory of lower bounds

for Boolean circuit complexity. Proc. of 19th ACM Symp. on Theory of
Computing, 77–82.

61. Solovay, R. and Strassen, V. (1977). A fast Monte-Carlo test for primality.
SIAM Journal on Computing 6, 84–85.

62. Stinson, D.R. (1995). Cryptography. Theory and Practice. CRC Press.
63. Stockmeyer, L.J. (1977). The polynomial time hierarchy. Theoretical

Computer Science 3, 1–22.
64. Strassen, V. (1986). The work of Leslie G. Valiant. Proc. of the Int.

Congress of Mathematics, Berkeley, Ca.
65. Thompson, C.D. (1979). Area-time complexity for VLSI. Proc. of 11th

ACM Symp. on Theory of Computing, 81–88.
66. Valiant, L.G. (1979). The complexity of computing the permanent. The-

oretical Computer Science 8, 189–201.
67. van Leeuwen, J. (1990) (ed.). Handbook of Theoretical Computer Science.

Elsevier, MIT Press.
68. Wagner, K. and Wechsung, G. (1986). Computational Complexity. VEB

Deutscher Verlag der Wissenschaften.
69. Wegener, I. (1982). Boolean functions whose monotone complexity is of

size n2/log n. Theoretical Computer Science 21, 213–224.
70. Wegener, I. (1987). The Complexity of Boolean Functions. Wiley. Freely

available via http://ls2-www.cs.uni-dortmund.de/∼wegener.
71. Wegener, I. (2000). Branching Programs and Binary Decision Diagrams

– Theory and Applications. SIAM Monographs on Discrete Mathematics
and Applications.

72. Wegener, I. (2002). Teaching nondeterminism as a special case of random-
ization. Informatica Didactica 4 (electronic journal).

73. Yao, A.C. (1977). Probabilistic computations: Towards a unified measure
of complexity. Proc. of 18th Symp. on Foundations of Computer Science,
222–227.

References 299

74. Yao, A.C. (1979). Some complexity questions related to distributed com-
puting. Proc. of 11th ACM Symp. on Theory of Computing, 209–213.

75. Yao, A.C. (2001). Lecture upon receiving the Turing Award. July 8, 2001,
Chersonissos, Crete.

Index

#P 198
#P-complete 199
#Sat 198, see also Sat

δ-close 168
≤1 see NC1-reduction
≤cd see AC0-reduction
≤proj see projection
≤rop see read-once projection
≤log see logarithmic reduction
⊕ see parity
≤T see Turing reduction
≡T see Turing equivalent
≤p see polynomial reduction
≤PTAS see PTAS reduction
≤rect see rectangular reduction
ε-optimal 100
3-DM 83
3-Partition 95
3-Sat 51, see also Sat

4-Partition 95

AC0 260
AC0-reduction 271
ACC0[m] 263
ACk 272
Agrawal 68, 128
Ahuja 16, 49
algorithm 18

deterministic 39, 69
nondeterministic 39
pseudo-polynomial time 105
randomized 8, 27, 39, 44, 69, 102

algorithmic complexity 23, 24
Alice 190, 219, 257

Alon 242, 254, 261
alternating counting class 263
AM 151
AND-gate 252
AND-nondeterminism 233
anti-clique 53, see also independent

set
approximation problem 101
approximation ratio 100
APX∗ 102
arithmetization 165
Arora 105, 164, 175
Arthur-Merlin game 151
Aspvall 128
asymptotic FPTAS 105
asymptotic worst-case approximation

ratio 101
Ausiello 10, 114, 164
Aut(G) see automorphism group
automorphism group 149
average-case runtime 23, 28

Bachmann 279
Balcázar 10
baseball 17
basketball 17
BDD see binary decision diagram
Bellare 164
Bernholt 17
best-fit decreasing 104
BFD see best-fit decreasing
big O notation 162, 279
bin packing problem 15, 47, 48, 52, 80,

178

302 Index

binary decision diagram 9, 209
binary decision tree 10
bit commitment 157
black box 8, 116
black box complexity 117
black box optimization 117
black box problem 116
BMST see bounded-degree minimum

spanning tree
Bob 190, 219, 257
Bollig VI, VII
Boolean

formula 9, 10
function 9, 10

Boppana 103, 254
bounded error 36
bounded-degree minimum spanning tree

78
bounded-error probabilistic polynomial

time 33, see BPP
bouquet 18
BinPacking see bin packing problem
BPP 29, 33, 40
branching program 9, 10, 209, 251, 267
Bundesliga 17, 92

C 35
C-complete 65, 196
C-easy 65
C-equivalent 65
C-hard 65
CAR see carry bit
carry bit 264
CC see clique cover problem
central moment 288
championship problem 16, 53, 54, 68,

85, 91, 94
Chebychev Inequality 291
checkers 190
Chernoff Inequality 33, 242, 292
chess 190
chip 17
Chomsky hierarchy 187
chromatic number 109
Chuang 21
Church-Turing Thesis 20, 22, 25, 26,

45
circuit 9, 10, 201, 251

nondeterministic 213

circuit depth 202, 252, 254
circuit size 252, 260
circuit value problem 196, 272
clause 17
Clique see clique problem
clique 15
clique cover problem 16, 47, 68
clique problem 16, 47, 48, 52, 56, 68,

81, 103, 111, 175, 178, 214, 254
Clote 10
co-C 35
coin toss 31
combinatoric rectangle 224
communication complexity 9, 10, 219,

220
communication game 219
communication matrix 224
communication protocol 220
communication rounds 221
complement 29
complete see C-complete

PSPACE 188
completely independent 285, 286
completeness

NP 7, 10, 77
complexity class 26
composition lemma 173
computable 43, 203
computation

parallel 20
quantum 20

computation path 39
computation time see runtime
conditional probability 284
configuration of a Turing machine 71,

187
conjunction 17
conjunctive (normal) form 17, 74, 260
co-NP 40
consistency test 167, 172
constant depth reduction see

AC0-reduction
context-sensitive language 187
Cook 71, 72, 107, 113
Cook’s Theorem 72, 189, 199
counting problem 198
covering problem 15
CP see championship problem
Crescenzi 10, 114, 164

Index 303

cryptographic assumptions 158
cryptography 18, 30
CSL 187
cubic 282
CVP see circuit value problem

Dı́az 10
decision problem 29
depth-first search 197
derandomization 66, 104, 212
determinant 199
DFS see depth-first search
DHC 14, see also Hamiltonian circuit

problem
DHCsym

see HC

DHP see directed Hamiltonian path
problem

Dietzfelbinger 68
Dijkstra 20
directed Hamiltonian path problem 78
directed s-t-connectivity 197
discrepancy 244
disjointness test 227
disjunction 17
disjunctive (normal) form 17, 260
distributional communication complex-

ity 243
division function 273
DNA-computer 20
Droste VI, VII
DTAPE(s(n)) 186
dynamic programming 94

easy
NP- 106

edge cover problem 15, 68
EdgeCover see edge cover problem
EP 28, 30
EQ∗ 229
EQ∗

n 269
equality test (EQ) 224
Erdős 242
error-correcting code 165
error-probability 29
essentially dependent 252
evaluation problem 13
event 283
exor see parity
EXOR-gate 252

EXOR-nondeterminism 233
expected optimization time 117
expected polynomial time see EP
expected value 286
explicitly defined 252
exponential 282
exponentially small 283

FACT see factoring
factoring 18, 128
failure-probability 28
fan-in 259
Feige 164
Fermat’s Last Theorem 4
fingerprinting technique 239
flow 16, see also network flow problem
fooling set 226
forcing component 80, 82
formula 208

quantified Boolean 189
formula size 254
FPTAS see fully polynomial-time

approximation scheme
Frens VII
fully polynomial-time approximation

scheme 102
function evaluator 167, 171

Gülich 17
Gabarró 10
gadget 51
Gambosi 10, 114, 164
game 190
gap technique 106, 173–175
Garey 10, 56, 74, 95, 128, 190
gate 201
gate elimination 253, 254
GC see graph colorability problem
geometric distribution 293
geometric rectangle 224
GraphIsomorphism see graph

isomorphism problem
Giel VI
go 190
golden computation path 212, 241
Goldmann 265
Goldreich 27, 164
Goldsmith VII
Goldwasser 145, 164

304 Index

grammar 41
context free 41

graph coloring problem 82, 109, 143,
178

graph isomorphism problem 81, 128
greater than (GT) 224
Gronemeier VII
Grotefeld 3, 22
growth rate 279, 281
guess 39
guess and verify 69

H̊astad 175
Hadamard matrix 229, 245
Hajnal 265
Halldórsson 103
Hamiltonian circuit problem 49,

56, 107, 158, see also traveling
salesperson problem

Hamiltonian path 78
Hamiltonian path problem 78
Hamming distance 122
handball 17
hard see also C-hard

NP- 106
hardware 201
hash function 152, 241
H̊astad 261
HC 14, see also Hamitonian circuit

problem
help 206
hockey 17
Hofmeister VI, 17
Homer 10
Hopcroft 3, 10, 19, 22, 187
HP see Hamiltonian path problem
Hromkovič 10, 105

I don’t know 28
IBDD see indexed BDD
Immerman 9, 193, 197
inapproximability 108
independent events 27, 285
independent random variables 286
independent set 16
independent set problem 16, 47, 52,

68, 81, 111
indexed BDD 269
indirect storage access 256, 268

inductive counting 195
inner product 227, 265, 273
input tape 186
interactive proof system 147
inverse function 273
investment advisers 37
IP 147
IP see inner product
IS see independent set problem
ISA see indirect storage access
isomorphism

graph 81

Jägersküpper VII
Jansen VII
Johnson 10, 56, 74, 95, 103, 104, 128,

190

k-dimensional matching 83
k-dimensional matching problem 16,

178, 198
k-DM see k-dimensional matching

problem
Köbler 143
Kann 10, 114, 164
Karmarkar 104
Karp 46, 104
Karpinski 265
Kayal 68, 128
Kirchhoff rule 16
knapsack problem 15, 47, 68, 78, 80,

94, 105, 116
Knapsack see knapsack problem
Kranakis 10
Kushilevitz 10, 235, 259

l’Hospital 281
Ladner 129
language 29
large number problems 93
Las Vegas algorithm 28
law of total probability 285
Lawler 14, 15, 90
layer depth 268
LBA problem 193
ld see layer depth
length of a branching program 209
Lenstra 14, 15, 90
Levin 71
linear 282

Index 305

linear bounded automaton 193
linear programming 128
linearity test 167, 168
literal 17
local replacement 51, 56
log-space complete 196
log-space reduction 196
logarithmic 282
logarithmic cost model 20
logarithmic reduction 196
LOGSPACE 196
Long(L) 191
Lovász 164
lower bound 3, 21, 24, 25, 223
Lund 164

Maass 265
MADD see multiple addition function
Magnanti 16, 49
MAJ see majority function
majority function 263, 273
majority vote 33
Marchetti-Spaccamela 10, 114, 164
Markov Inequality 31, 290
Markov process 124
marriage problem 16, 53, 198
Martello 15
mask technique 229
Max-2-Sat 178
Max -3-Sat 161, 173, 177, 178, 184
Max -k-Sat 161, 178
maximization problem 99
maximum weight satisfiability 113
Max-NPO 112
Max-Sat 47
Mayr 10, 164
Micali 145
middle bit of multiplication 230, 247
Miller 128
Miltersen 66
minimal circuits 132
minimax principle 118, 244
Minimax Theorem 119
minimization problem 99
minimum spanning tree 78
Min-NPO 112
minterm 260
modified threshold circuit 266
MODm-gate 263

monochromatic 225
monomial 17
monotone Boolean function 254
monotone circuits 254
monotone projection 272
Monte Carlo algorithm 28
Motwani 6, 10, 19, 22, 164, 187, 242
multiple addition function 273
multiplication function 273
multiprocessor systems 10

NC1-reduction 271
NCk 272
Nechiporuk 255
needle in the haystack 121
network flow problem 16, 49, 53
neural nets 252
NetworkFlow see network flow

problem
Nielsen 21
Nisan 10, 235, 259
non-adaptive 162
non-uniform 220
nondeterminism 39
nondeterministic Turing machine 39
NP 39
NP-complete 96

strongly 93, 94, 96
NPO 112
NTAPE((s(n)) 186
number theory 18, 128

O see big O notation
OBDD see ordered BDD
oblivious 71, 204
Ogihara 10
one-sided error 29, 34, 61
one-way function 157
opponent 118
OR-gate 252
OR-nondeterminism 233
oracle 45, 130
oracle class 127
order of magnitude 279
Orlin 16, 49
outcome of a random experiment 283
output tape 196
Owen 243

P 26, 40

306 Index

padding technique 191
pairwise disjoint 283
pairwise independent 286
Papadimitriou 10
parallel computation 10
parallel computation hypothesis 195,

204, 206
parity 17
parity function 260, 265, 273
Partition 52, 80, 81, see partition

problem
partition problem 15
path

computation see computation path
path function 122
Paul 146
PCP Theorem 8, 10, 164
PCP(r(n), q(n)) 162
pebbling algorithm 103
perfect matching 198
permanent 198, 199
perpetual motion machines 2
PH see polynomial hierarchy
pigeonhole principle 211
Πk-circuit 260
Pinedo 15, 90
planar graph 90
polylogarithmic 282
polynomial hierarchy 8, 127, 132
polynomial reduction 60, 61
polynomial-time approximation scheme

102
polynomial-time many-one reduction

see polynomial reduction
polynomial-time reduction see

polynomial reduction
polynomially bounded 282
polynomially equivalent 60, 64
polynomially self-reducible see

self-reducible
polynomially small 283
population 117
PP 33, 40
Prömel 10, 164
primality testing 18, 30, 33, 68, 93,

128, 158
Primes see primality testing
private coins 240
probabilistic method 242, 261

probabilistic proof-checker 162
probabilistically checkable proofs 161
probability 23
probability amplification 31
probability space 286
problem

algorithmic 6
approximation 10, 17
decision 21, 35, 46
evaluation 35, 46
maximization 182
minimization 182
optimization 33, 35, 46
search 13, 21, 33

product graph 176
projection 271
proof verifier 167
Protasi 10, 114, 164
protocol length 220
protocol tree 220

randomized 233
prover 146
pseudo-polynomial 95
PSPACE 186
PTAS see polynomial-time approxi-

mation scheme
PTAS reduction 110
public coins 240
Pudlák 265

QBF see quantified Boolean formula
quadratic 282
quality of a solution 33
quasi-linear 282
quasi-polynomial 282
query 130
QuickSort 27, 28

Rackoff 145
Raghavan 6, 242
random bit 27
random polynomial time see RP
random polynomial time with one-sided

error see RP
random variable 285
randomization 7, 39
randomized protocol tree 233
randomized search heuristic 115, 116
rank lower bound method 228

Index 307

Razborov 254, 262, 263
read-once projection 271
read-only 186, 205, 206
reciprocal function 273
rectangle 225
rectangular reduction 229
recursive see computable
reduction 7
register machine 19, 21, 22
restriction 52, 56
Rinnooy Kan 14, 15, 90
RP 29, 32, 40
RP∗ 32, see also NP

s-oblivious branching program 269
s-t-connectivity 197
Safra 164, 175
sample space 283
Sat 17, 51, 68, 72, 79, 103, 111, see also

satisfiability problem
Satcir 17, 137, see also Sat

satisfiability see Sat

satisfiability problem 17, 137, 164, 173,
178, 198, 214

satisfiability problem of level k 137
satisfiable 17
Satk

cir 137, 188
Sauerhoff VI
Savitch 9
Savitch’s Theorem 192
Saxena 68, 128
scalar product see inner product
Schönhage 3, 22
Schöning 143
Schaefer VII
scheduling problem 15
Schmitt 17
search tree 120
self-improvability 176
self-reducible 214–216
sequencing with intervals 80, 95
set cover problem 85, 103, 178
SetCover see set cover problem
#P 198
#P-complete 199
Shmoys 14, 15, 90
SI see subgraph isomorphism problem
Σk-circuits 260
similar

algorithmically 43, 45, 61
complexity theoretically 43

simple see C-simple
Singh 4
Sipser 10, 56
size of a branching program 209
Smolensky 264
soccer 17, 55, 92
Socrates 8
software 201
Solovay 30, 68
solution

to an approximation problem 99
sorting 20
space constructible 192
space-bounded complexity 186
specification 17
Spencer 242, 261
SQU see squaring function
squaring function 273
s-t-DHP 78
Steger 10, 164
Stinson 18
Stirling’s formula 236
Stone 128
Storch VII
Strassen 5, 30, 68
strictly exponential 282
strictly exponentially small 283
strongly NP-complete 108
strongly NP-hard 108
structural complexity 8, 10, 185
subexponential 282
subfunctions 252
subgraph isomorphism problem 81
subset sum problem 78, 79, 95
SubsetSum see subset sum problem
Sudan 164
superpolynomial 282
surveillance problem 15
SWI see sequencing with intervals
Switching Lemma 261
Szegedy 164, 265
Szelepcsényi 9, 193, 197

T n
≥k 253

T n
≤k 253

team building 16
threshold circuit 264

308 Index

threshold function 253
threshold gate 264
time see runtime
top-down programming 45
Torán 143
total probability

law of 285
Toth 15
tournament 27
trap 122
traveling salesperson problem 14, 48,

49, 67, 94, 99, 105, 107, 116, 178
TSP 14, see also traveling salesperson

problem
TSP∆ 14, see also traveling salesper-

son problem
TSPd-Euclid 14, see also traveling

salesperson problem
TSPN 14, see also traveling salesper-

son problem
TSP� 105
Turing equivalent 45, 49, 63
Turing machine 21, 45, 71, 113, 186

non-uniform 203, 206
oblivious 96, 204
one-tape 223
randomized 27, 39
two-tape 223

Turing reduction 45, 61
Turán 265
two-person zero-sum game 118
two-sided error 29

Ullman 3, 10, 19, 22, 187
unbounded-error probabilistic polyno-

mial time 33, see PP
unfold 207
uniform 203
uniform cost model 20
unimodal function 116
unit cost model 22, 279
upper bound 3, 21, 24, 25

utility 15

Valiant 199
value

of a game 119
of a solution 99

van Leeuwen 10
van Melkebeek VII
verification problem 17
verifier 146
vertex coloring 81
vertex cover problem 15, 47, 52, 68,

103, 105, 112, 178
Vetter 3, 22
Victoria 146
VLSI circuits 219, 223, 246
volleyball 17
von Neumann 119
VertexCover see vertex cover

problem

Wagner 10
Wechsung 10
Wegener 6, 10, 17, 72, 254, 255
Witt VI
word problem 191
work tape 186
worst-case approximation ratio 100
worst-case expected runtime 27, 28
worst-case runtime 23, 26

Yao 4, 118, 244

zero-error see ZPP
zero-knowledge proofs 155
zero-knowledge property

perfect 155
under cryptographic assumptions

158
zero-sum game 243
ZPP 28–30, 32, 40
ZPP∗ 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

